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The sad thing about artificial intelligence is
that it lacks artifice and therefore intelligence

Baudrillard





Abstract

In this thesis we deal with the problem of navigating a team of robots in
both known and unknown environments, so as the mission’s objectives to be
fulfilled. The structure of this thesis is divided into two main pillars. In the first
pillar we deal with the problem of determining an optimal path involving all
points of a given area of interest (offline), while avoiding sub-areas with specific
characteristics (e.g. obstacles, no-fly zones, etc.). This problem, which is usually
referred as multi-robot coverage path planning (mCPP), has been proven to
be NP-hard. Currently, existing approaches produce polynomial algorithms
that are able to only approximate the minimum covering time. In chapter 3,
a novel methodology is proposed, capable of producing such optimal paths in
approximately polynomial time. In the heart of the proposed approach lies the
DARP algorithm, which divides the terrain into a number of equal areas each
corresponding to a specific robot, in such a way to guarantee: complete coverage,
non-backtracking solution, minimum coverage path, while at the same time does
not need any preparatory stage. In the second pillar of this thesis, we design
algorithms capable of navigating team of robots without any prior knowledge.
More specifically, we deal with problems where the objectives of the multi-robot
system can be transformed to the optimization of a specifically defined cost-
function. Due to the unknown environment, unknown robots’ dynamics, sensor
nonlinearities, etc., the analytic form of the cost-function is not available a
priori. Therefore, standard gradient descent-like algorithms are not applicable
to these problems. In chapter 4, we first show that optimal one-step-ahead
exploration schemes that are based on a transformed optimization criterion can
lead to highly efficient solutions to the multi-robot exploration. As, however,
optimal one-step-ahead solutions to the transformed optimization criterion
cannot be practically obtained using conventional optimization schemes, the
second step in our approach is to combine the use of the transformed optimization
criterion with the Cognitive Adaptive Optimization (CAO): CAO is a practicably
feasible computational methodology which adaptively provides an accurate
approximation of the optimal one-step-ahead solutions. This combination results
in a multi-robot exploration scheme which is both practically implementable
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and provides with quite efficient solutions as it is shown both by theoretical
analysis and, most importantly, by extensive simulation experiments and real-life
underwater sea-floor mapping experiments in the Leixões port, Portugal. Finally,
in chapter 5, we propose a distributed algorithm applicable to a quite large
class of practical multi-robot applications. In such multi-robot applications, the
user-defined objectives of the mission can be casted as a general optimization
problem, without explicit guidelines of the sub-tasks per different robot. A
novel distributed methodology is proposed, based on the CAO algorithm (as
proposed on the previous chapter) that carefully designs a cost-function for each
operational robot, where the joined optimization of which can accomplish the
overall team objectives. The latter can be achieved by online learning (on each
robot), only the problem-specific characteristics that affect the accomplishment
of the overall mission objectives. The overall, low-complexity algorithm, can
straightforwardly incorporate any kind of operational constraint, is fault tolerant
and can appropriately tackle time-varying cost-functions. A cornerstone of
this approach is that it shares the same convergence characteristics as those of
block coordinate descent algorithms. The proposed algorithm is evaluated in
four heterogeneous simulation set-ups under multiple scenarios, against both
general purpose (centralized) and specifically-tailored to the problem in hand,
algorithms.



Περίληψη

Η παρούσα διατριβή ασχολείται με το πρόβλημα της πλοήγησης ομάδων ρο-

μπότ σε άγνωστα ή μερικώς γνωστά περιβάλλοντα, έτσι ώστε να καλυφθούν

οι στόχοι της εκάστοτε αποστολής. Η δομή της διατριβής χωρίζεται σε δυο

κύριους πυλώνες.

Ο πρώτος πυλώνας αφορά τον σχεδιασμό τροχών (offline) για περιπτώ-
σεις στις οποίες υπάρχει πληροφορία σχετικά με το περιβάλλον που χρειά-

ζεται να καλύψει η ομάδα από ρομπότ. Για την περίπτωση του ενός ρομπότ,

όπου το πρόβλημα είναι γνωστό και ως Σχεδιασμός Τροχιάς για Κάλυψη

(Coverage Path Planning, CPP), μια βέλτιστη O(n) μεθοδολογία έχει προ-
ταθεί, όπου n είναι το μέγεθος του πλέγματος που πρέπει να καλυφθεί. Δυ-
στυχώς, όταν εμπλέκονται παραπάνω από ένα ρομπότ το πρόβλημα γίνεται

NP-hard και μόνο προσεγγιστικές μεθοδολογίες έχουν προταθεί. Στο 3ο
κεφάλαιο της παρούσας διατριβής, προτείνουμε έναν αλγόριθμο που χωρίζει

τη διαθέσιμη περιοχή σε χωρικά-συμπαγείς υποπεριοχές, μία για κάθε ρο-

μπότ. Αξίζει να σημειωθεί ότι οι αρχικές θέσεις των ρομπότ είναι μέρος της

εξίσωσης και άρα δεν απαιτείται ξεχωριστός χρόνος έτσι ώστε να μεταφερθεί

το κάθε ρομπότ στη δικιά του υποπεριοχή. Μετά από τη χάραξη αυτών των

υποπεριοχών, εφαρμόζουμε κατανεμημένα τον βέλτιστο αλγόριθμο (STC),
που έχει προταθεί για την περίπτωση του ενός ρομπότ, σε κάθε μια από αυτές

τις περιοχές. Συνολικά, η μεθοδολογία πλοήγησης πετυχαίνει:

• να διασχίσει όλη τη διαθέσιμη περιοχή (complete coverage),

• περνώντας μόνο μια φορά από κάθε σημείο της περιοχής (without back-
tracking),

• πραγματοποιώντας ελάχιστα-ίδια μονοπάτια για κάθε διαθέσιμο ρομπότ
(minimum coverage path per robot),

• και τέλος τα ρομπότ μπορούν να ξεκινούν από τις αρχικές τους θέσεις
(initial positions constraint).
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8 Περίληψη

Μελετώντας τη σχετική βιβλιογραφία (κεφάλαιο 2), προκύπτει ότι καμία άλλη

μέθοδος δεν πετυχαίνει όλα τα προηγούμενα χαρακτηριστικά στην παραγό-

μενη λύση της.

Ο δεύτερος άξονας αφορά την ανάπτυξη μια ομάδας από ρομπότ σε ένα

τελείως άγνωστο περιβάλλον, έτσι ώστε να επιτευχθούν οι στόχοι της απο-

στολής. Στο δεύτερο άξονα οι αποφάσεις για την πλοήγηση των αυτόνομων

οχημάτων λαμβάνονται σε πραγματικό χρόνο αξιοποιώντας τη γνώση (από

τις μετρήσεις) που έχουν λάβει μέχρι το εκάστοτε βήμα. Η πλειονότητα των

συγκεκριμένων προβλημάτων έχει αποδειχθεί αρκετά δύσκολη να επιλυθεί

αποδοτικά. Στη βιβλιογραφία το παραπάνω πρόβλημα έχει αντιμετωπιστεί με

τις ακόλουθες κλάσεις προσεγγίσεων:

• Βέλτιστος έλεγχος ή τεχνικές δυναμικού προγραμματισμού

• ΄Απληστοι αλγόριθμοι

• Εκμάθηση παραμέτρων ελέγχου μέσω εκτεταμένων προσομοιώσεων
(simulation-based)

Στο 2ο κεφάλαιο παρουσιάζουμε συνοπτικά τις βασικές αρχές που διέπουν τη

λειτουργία τους αλλά και τα επιτεύγματα και τις αδυναμίες που παρουσιάζουν

η κάθε μια από αυτές.

Στο 4ο κεφάλαιο προτείνουμε μια μεθοδολογία που είναι σε θέση να σχε-

διάζει τις τροχιές των ρομπότ αυτόματα σε πραγματικό χρόνο, έτσι ώστε να

κατασκευάζεται ο χάρτης της περιοχής στον μικρότερο δυνατό χρόνο. Το

συγκεκριμένο πρόβλημα έχει αποδειχθεί ότι είναι NP-complete, έτσι δεν μπο-
ρεί να λυθεί με βέλτιστο τρόπο. Στο ίδιο κεφάλαιο δείχνουμε ότι το συνολικό

πρόβλημα μπορεί να αντιμετωπιστεί επαρκώς, εάν σχεδιαστεί μια συνάρτηση

κόστους (κριτήριο απόδοσης) που περιλαμβάνει όρους που αφορούν συγκε-

κριμένες παραμέτρους και μετρικές του προβλήματος της χαρτογράφησης.

Παρόλα αυτά, οι άπληστες μεθοδολογίες δεν μπορούν να εφαρμοστούν στον

πραγματικό κόσμο αφού θα απαιτούσαν από την ομάδα των ρομπότ να κάνει

ένα (μεγάλο) σύνολο από κινήσεις και ύστερα να αποφασίσει ποια είναι η α-

ποδοτικότερη για να ακολουθήσει. Για να αντιμετωπίσουμε το συγκεκριμένο

πρόβλημα προτείνουμε μια μεθοδολογία πλοήγησης που θα μπορεί να υλοποι-

ηθεί σε ρομποτικά αυτόνομα οχήματα πραγματικού κόσμου. Η μεθοδολογία

αυτή βασίζεται στον Γνωσιακό Προσαρμοστικό αλγόριθμο Βελτιστοποίησης

(Cognitive-based Adaptive Optimization, CAO) και είναι σε θέση να προ-
σεγγίζει τις λύσεις από τους άπληστους αλγορίθμους μέσω ενός πρακτικά

υλοποιήσιμου συστήματος αποφάσεων, αφαιρώντας τη μη ρεαλιστική απαί-

τηση για πραγματοποίηση ενός συνόλου από εντολές ελέγχου πριν τη λήψη
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της απόφασης. Ο προτεινόμενος αλγόριθμος ξεπέρασε την υπάρχουσα στρα-

τηγική χαρτογράφησης σε μια σειρά από εκτεταμένες προσομοιώσεις, αλλά

και όταν εφαρμόστηκε σε πραγματικά μη επανδρωμένα υποβρύχια οχήματα

που βρίσκονταν στο λιμάνι Leixões του Πόρτο.
Στο 5ο κεφάλαιο προτείνουμε έναν κατανεμημένο αλγόριθμο γενικού

σκοπού, που είναι σε θέση να πλοηγεί ομάδες από ρομπότ με σκοπό την

επίτευξη των αυθαίρετα ορισμένων στόχων της αποστολής. Η συγκεκριμέ-

νη μεθοδολογία επεκτείνει τον αλγόριθμο που προτάθηκε στο προηγούμενο

κεφάλαιο, για αυτό το λόγο παρουσιάζουμε και μια λεπτομερή σύγκριση της

απόδοσης των δυο αλγορίθμων. Το κύριο χαρακτηριστικό που διαφοροποιεί

τον παρόντα αλγόριθμο - εκτός από την κατανεμημένη φύση του - σε σχέση

με αυτόν που προτάθηκε στο 4ο κεφάλαιο, είναι η ικανότητά του να χρη-

σιμοποιεί αποδοτικά πληροφορία από προηγμένες αποφάσεις, με σκοπό την

προσέγγιση της παραγώγου της συνάρτησης κόστους που πρέπει να βελτι-

στοποιηθεί σε κάθε αποστολή. Συνολικά, η προτεινόμενη μεθοδολογία έχει

τα ακόλουθα πλεονεκτήματα:

(α) δεν απαιτεί γνώση από τις δυναμικές του συστήματος που καλείται να

βελτιστοποιήσει,

(β) μπορεί να ενσωματώσει οποιουδήποτε είδους λειτουργικούς ή φυσικούς

περιορισμούς,

(γ) έχει τα ίδια χαρακτηριστικά σύγκλισης με την οικογένεια των block
coordinate descent (BCD) αλγορίθμων,

(δ) είναι ανεκτική στον θόρυβο,

(ε) μπορεί να χειριστεί επαρκώς προβλήματα πλοήγησης πολλαπλών ρο-

μπότ, όπου οι στόχοι αλλάζουν κατά τη διάρκεια της αποστολής, και

(στ) μπορεί να υλοποιηθεί σε ενσωματωμένα συστήματα με περιορισμένες

ενεργειακές δυνατότητες.

Ο προτεινόμενος αλγόριθμος δοκιμάστηκε σε τέσσερα διαφορετικά προβλήματα

που αφορούν την πλοήγηση ρομπότ, με αρκετά διαφορετικά σενάρια, συ-

γκρινόμενος με γενικού σκοπού αλγορίθμους αλλά και μεθοδολογίες ειδικά

κατασκευασμένες για το εκάστοτε πρόβλημα.
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1 Introduction
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1.2 Online Multi-Robot Trajectory Generation . . . . . . . . . . 23

Since the 1970s, autonomous robots have been in daily use at very
low and very high altitudes, for deep-sea and space exploration and in
almost all aircrafts [3]. In the foreseeable future, the usage of a single robot
will become obsolete, as there is an ever-increasing interest of multi-robot
systems. The causality of this trend is outlined in the following three
points. First, the recent advantages in hardware and communications allow
the cooperative deployment of many affordable robots. Second, the use of
multiple robots introduces redundancy which can be translated to mission
speed-up and/or fault-tolerant characteristics (e.g. in cases of one or more
robots faces a malfunction). Third, the utilization of multi-robot teams
may tackle problems that cannot be solved with a single robot (e.g. complete
space coverage). Robotic missions in which the multi-robot configuration
can be more appealing include: surveillance in hostile environments (e.g.
areas contaminated with biological, chemical or even nuclear wastes), law
enforcement missions (e.g. border patrol), agriculture activities (e.g. soil
sampling), cleaning missions (e.g. cleaning up an oil spill), etc.

In all the aforementioned missions, there are several factors that affect
the performance of the team of robots. These are related with the techno-
logical limitations of the hardware which is used and the methodologies
that process and fuse data to obtain valid conclusions related with the
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actual robot performance. A key element of success in almost every mis-
sion is the ability to exploit (known terrain) or produce maps (unknown
environment) by utilizing all the available resources.

Generally speaking, a multi-robot system can be characterized as a
set of robots operating in the same environment. However, robotic sys-
tems may range from simple sensors, acquiring and processing data [4],
to complex machines with several degrees of freedom, able to interact
with the environment in fairly complex ways [5–7]. In this Thesis, we
primarily focus on mobile platforms, equipped with sophisticated sensors
and actuators, able to execute complex tasks. More precisely, we study
the problem of multi-robot exploration/coverage in both known and un-
known environments, for online and offline approaches where the mission
objectives may vary from coverage to surveillance and mapping. In the
upcoming sections we introduce the reader to the details of the problems as
studied in this Thesis as well as an overview of the proposed methodologies,
respectively. A literature review on the scope of the main pillars of this
Thesis is presented in chapter 2.

1.1 Offline Multi-Robot Coverage Path Planning
One of the fundamental problems in robotics is to determine an optimal
path involving all points of a given area of interest, while avoiding sub-areas
with specific characteristics (e.g., obstacles, no-fly zones, etc.). For the
single robot case, also known as single robot coverage path planning (CPP),
an O(n) optimal methodology has already been proposed and evaluated in
the literature, where n is the grid size. The majority of existing algorithms
for the multi robot case (mCPP), utilize the aforementioned algorithm.
Due to the complexity, however, of the mCPP, the best the existing mCPP
algorithms can perform is at most 16 times the optimal solution, in terms
of time needed for the robot team to accomplish the coverage task, while
the time required for calculating the solution is polynomial. In chapter
3, we propose a new algorithm which converges to the optimal solution,
at least in cases where one exists. The proposed technique transforms
the original integer programming problem (mCPP) into several single-
robot problems (CPP), the solutions of which constitute the optimal
mCPP solution, alleviating the original mCPP explosive combinatorial
complexity. Although it is not possible to analytically derive bounds
regarding the complexity of the proposed algorithm, extensive numerical
analysis indicates that the complexity is bounded by polynomial curves
for practical sized inputs. In the heart of the proposed approach lies the
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DARP algorithm, which divides the terrain into a number of equal areas
each corresponding to a specific robot, so as to guarantee complete coverage,
non-backtracking solution, minimum coverage path, while at the same time
does not need any preparatory stage (video demonstration and standalone
application are available on-line http://tinyurl.com/DARP-app).

1.2 Online Multi-Robot Trajectory Generation
In this field of study, the objective is to online calculate the robots’ trajec-
tories so as to achieve the mission objectives.

In chapter 4, we propose a methodology which deals with the problem
of autonomously navigate the robots so as to construct an accurate map of
the unknown area in minimum time. Such a problem can be transformed
into a dynamic optimization problem which, however, is NP-complete and
thus infeasible to be solved in optimal manner. A usual attempt is to relax
this problem by employing greedy (optimal one-step-ahead) solutions which
may end-up quite problematic. In this chapter, we first show that optimal
one-step-ahead exploration schemes that are based on a transformed opti-
mization criterion can lead to highly efficient solutions to the multi-robot
exploration. Such a transformed optimization criterion is constructed using
both theoretical analysis and experimental investigations and attempts
to minimize the “disturbing” effect of deadlocks and nonlinearities to the
overall exploration scheme. As, however, optimal one-step-ahead solutions
to the transformed optimization criterion cannot be practically obtained
using conventional optimization schemes, the second step in our approach
is to combine the use of the transformed optimization criterion with the
Cognitive Adaptive Optimization (CAO): CAO is a practicably feasible
computational methodology which adaptively provides an accurate ap-
proximation of the optimal one-step-ahead solutions. The combination of
the transformed optimization criterion with CAO results in a multi-robot
exploration scheme which is both practically implementable and provides
with quite efficient solutions as it is shown both by theoretical analysis
and, most importantly, by extensive simulation experiments and real-life
underwater sea-floor mapping experiments in the Leixões port, Portugal.

Finally, in chapter 5 we propose a distributed algorithm applicable to a
quite large class of practical multi-robot applications. In such multi-robot
applications, the user-defined objectives of the mission can be casted as
a general optimization problem, without explicit guidelines of the sub-
tasks per different robot. Due to the unknown environment, unknown
robots’ dynamics, sensor nonlinearities, etc., the analytic form of the

https://youtu.be/LrGfvma41Ak


24 1 Introduction

optimization cost function is not available a priori. Therefore, standard
gradient descent-like algorithms are not applicable to these problems. To
tackle this, we introduce a new algorithm that carefully designs each robot’s
sub-cost function, where the optimization of which can accomplish the
overall team objective. Upon this transformation, we propose a distributed
methodology based on the CAO algorithm (as proposed on the previous
chapter), that is able to approximate the evolution of each robot’s cost
function and to adequately optimize its decision variables (robot actions).
The latter can be achieved by on-line learning only the problem-specific
characteristics that affect the accomplishment of mission objectives. The
overall, low-complexity algorithm, can straightforwardly incorporate any
kind of operational constraint, is fault tolerant and can appropriately tackle
time-varying cost functions. A cornerstone of this approach is that it shares
the same convergence characteristics as those of block coordinate descent
algorithms. The proposed algorithm is evaluated in four heterogeneous
simulation set-ups under multiple scenarios, against both general purpose
(centralized) and specifically-tailored to the problem in hand, algorithms.
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2.1 Offline Multi-Robot Coverage Path Planning

Despite the fact that mCPP(multi-robot Coverage Path Planning) is a
relative young field of research, there is a plethora of works that attempt
to address the limitations and the restrictions of this problem. An in-depth
discussion of this field is beyond the scope of this Thesis, thus, in order to
construct a more appropriate and homogeneous pool of alternative works,
only publications that are in line with our problem formulation (section
3.2) are included. For a more detailed and complete survey with regards
to the latest achievements on the CPP/mCPP problem the reader should
refer to [8].

The authors in [9] transformed, for the first time, the single robot
Spanning Tree Coverage (STC) Algorithm [10] into a method that is able
to incorporate team of robots. Their centralized algorithm (referred as
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MSTC) guarantees the complete coverage of the operational area while
avoids a-priori known obstacles. Moreover, the non-backtracking version
produces a solution that visits every cell only once, while it is robust to
robot’s failures. Unfortunately, the path length for each robot is critically
depended on the initial position of the robots and indeed in the worst-case
scenario, the maximum path length for the one robot is almost equivalent
to that of a single robot case, even though there may exist alternative
optimal paths configurations.

The same authors, in an attempt to alleviate the aforementioned short-
coming, proposed an enhanced version (referred as OPT-MSTC) [11], in
which the form of the spanning tree is modified so as to minimize the max-
imum distance between every two consecutive robots along the spanning
tree path. This technique performs statistically better than the random
generated tree, but again without any guarantee with respect to the initial
robots’ positions.

An alternative technique that also utilizes spanning trees, was pre-
sented in [12]. In this work, the authors provide an upper bound on the
performance of a multi-robot coverage algorithm on known terrain, guar-
anteeing a performance at most sixteen times the optimal cost, preserving
at the same time the key feature of complete coverage. Although the
non-backtracking guarantee has been now removed, the MFC algorithm
performs significantly better from both MSTC and OPT-MSTC in terms
of minimizing the maximum robot’s path length, revealing that solutions
without the equality constraint in the robot’s path length are far away
from the optimal team utilization.

The authors in [13], developed a methodology that attempts to solve
the problem of patrolling a known environment by a team of mobile robots,
which can be translated to visiting all the points of the terrain with a
certain frequency. Indeed, the patrol problem is closely related to the
mCPP problem, therefore solutions that are used for patrolling might be
used for mCPP as well. In this work, the authors first produce a minimal
cyclic path, similar to [10], that traverse every single cell of the operation
area and afterwards they search for the best “new” robots’ initial positions.
These new locations are calculated so as i) to minimize the maximum
distance from their initial positions and ii) these to-be-traveled distances
to be more or less the same. Unfortunately, this separation into two
independent tasks, restricts the performance of the proposed algorithm.
As a matter of fact, there is no upper bound regarding of number of the
cells that are going to be visited in the worst-case scenario, in order to
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fulfill the condition about the equality in robots’ paths, even in cases where
an alternative optimal solution actually exists.

2.1.1 Area division, for multi-robot tasks

Considering that the proposed approach (chapter 3) for the mCPP problem
utilizes a mechanism that breaks down the operation area into robot-
exclusive zones, in this subsection we present the dominant area division
techniques, in order to assist multi-robot tasks - not limited to area coverage
problem.

An interesting method that falls in this class, has been presented in [14].
The operation area is divided using sweep-line approach and in the sequel,
each sub-area is assigned to the most appropriate robot, based on their
relative capabilities. However, the approach assumes as essential the
unrealistic condition that the robots are initially located on the boundaries
of the operation area. Moreover, the presented algorithm considers only
convex areas without obstacles.

In [15], the authors proposed a complete approach for multi-UAV area
coverage problem with a direct application to the task of remote sensing in
agriculture. As first step, the authors proposed an area subdivision method,
which expands the well-known alternate-offer protocol [16]. This technique,
aims to perform the tasks of area division and assignment simultaneously,
but in a distributed effective way. Despite the well establishment of
the method in terms of implementation details, there is no performance
guarantee. The authors state that the final subareas assignment is a perfect
equilibrium, but there is no reference on how the approach overcomes sub-
optimal cases, which will be inevitably appeared in cases of non-convex
areas or “difficult” initial robots’ placement.

The authors in [17], presented an alternative method using a heuristic
algorithm to tackle the problem of arbitrary polygon division. Despite
the fact that the results are rather promising, and their algorithm runs
in polynomial time, the produced solution has two main disadvantages.
On one hand, there is no specific guarantee about the optimality of the
area division, while on the other hand the initial robots’ positions are not
taking into account.

The algorithm described in [18], aims to achieve an enhanced multi-
robot exploration by dividing workplace into separated regions for each
available robot. The authors, by employing the K-means algorithm, divide
the available terrain into distance-related, convex subregions and afterwards
apply a robot-subregion assignment mechanism to the transformed linear
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programming problem, utilizing LP-solve software1. Unfortunately, this
two-stage procedure may end up with highly sub-optimal solutions, where
it might be required for the robots to travel long distances (in comparison
to the whole operation area) in order to reach their assigned subareas.

Many of the state-of-the-art approaches regarding the area division
problem in multi robot context (e.g. [19–21]), have been relied either on
the Lloyd’s [22] algorithm, with the known convergence properties [23] or
on the Voronoi partitioning [24]. Although, these approaches seem suitable
for the mCPP problem, and especially for the area division problem, they
differ at a quite important aspect. These approaches seek to answer the
following question: “Which are the most preferable positions to place the
robots, so as to cover the non-occupied space with their on-board sensors?”
On the contrary, in the present formulation the term “cover” implies that
the respective robot has to physically visit the corresponding assigned
area. The aforementioned approaches are better suited for problems, such
as to position a team of robots in a terrain so that any location is as
close as possible to at least one robot [25] or to optimally monitoring
a dynamic event with heterogeneous sensory interest (e.g. oil spill) [1].
Thus, the majority of these approaches solves the area division problem
independently of the robots’/agents’ initial positions. Therefore, the direct
appliance of these algorithms to the mCPP problem may lead to quite
sub-optimal results as the robots’ areas may be equally divided, but the
time/cost to reach these sub-areas has been left out of the equation.

2.2 Online Multi-Robot Trajectory Generation

We continue the review of the state-of-the-art in the direction of of online
path planning trajectory generation for multi-robot systems. Mathemati-
cally speaking, multi-robot exploration, i.e., the on-line generation of robot
trajectories so as to maximize accuracy and efficiency of the mission is
an NP-hard [26–28] or, equivalently, a non-convex dynamic optimization
problem. As a result, any attempt to generate the globally optimal solution
is not possible to end up with a computationally and practically feasible
solution.

2.2.1 Optimal control or dynamic programming approaches

To alleviate the above problem, many multi-robot approaches attack,
instead of the original problem, a simplified version of it. In such a way,

1Mixed integer linear programming (milp) solver http://lpsolve.sourceforge.net/

http://lpsolve.sourceforge.net/
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a computationally feasible solution, utilizing optimal control or dynamic
programming techniques, is possible to be constructed at the expense, of
course, of sacrificing global optimality. For instance, to render the decision-
making scheme computationally feasible, many methodologies [29–31]
assumed relaxed or linearized version of the multi-robot problem. A usual
assumption is that the robots operate in a discrete space where their
actions and measurements can also take values from a finite discrete set
of values [32, 33]. The exploitation of the above assumption can lead to
remarkable results in the context of multi-robot tasks, presenting many
real-life applications, e.g. [34]. Unfortunately, these strategies cannot be
fully informed by the (usual occurring) continuous field measurements,
while they can be computationally intractable for large state systems,
e.g. a mobile robot operating in the real world often has millions of
possible states [35]. Other multi-robot approaches, that fall in this class,
adapt the assumption of perfect or sufficient knowledge of the dynamics
of the overall multi-robot system, i.e. the dynamics of each and every
robot along with their interactions with the other robots and the external
environment [36,37]. In such cases, the multi-robot problem can be seen
to be equivalent to a standard optimization problem, where the robots’
decision values are generated according to e.g., a gradient-descent or
gradient-descent-like algorithm [38]. However, the requirement for perfect
or sufficient knowledge of the overall dynamics renders the overall control
design practically infeasible in many multi-robots applications, as they
typically involve a large number of controllable variables with highly
complex and uncertain dynamics [39–41].

2.2.2 Optimal one-step-ahead/Greedy approaches

Another well-investigated class of multi-robot approaches, is the optimal-
one-step-ahead methodologies. In this family of approaches, the next robots’
decision variables are chosen greedily, so as to optimize an appropriately
defined cost function that is related to the problem in hand. For instance,
in the domain of multi-robot exploration, a common practice is to choose
the next robots’ positions that maximize the expected information gain
[42–44] or minimize the trace of the EKF error covariance matrix [45, 46].
Another subset of approaches [47, 48] optimizes a quality function that
encloses, in the best possible way, the goals of the trajectory generation
problem without any prior knowledge about the terrain morphology or the
underlying dynamics. The trajectories are chosen so as to optimize this
quality function, using in most of the cases model-free Gradient-decent-like
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approaches [38]. Although, many of these approaches have been successfully
evaluated in real-life multi-robot platforms, the majority of them suffer
from the following drawbacks. First and foremost, the non-linearities may
give rise to undesirable divergence (such as in cases where the noise does
not follow the Additive Gaussian White Noise model). For example, it
is usually considered that a robot can accurately estimate the position
of an object or a point in the environment (landmark/cell) as soon as it
perceives it. In most of the existing optimal-one-step-ahead approaches,
this assumption allows in each timestamp the a priori calculation of the cost
function as well as the robots’ decision variables that greedily optimize such
a cost function. Moreover, such an assumption is crucial for overcoming
deadlocks (local minima) which are frequently encountered when greedy
approaches are employed [49,50]. However, in real-world set-ups the above-
mentioned assumption renders the existing approaches not practicable as it
is not possible anymore to calculate in real-time the cost function as well as
the locations of the robots that greedily optimize it. As a consequence, the
employed techniques for avoiding or escaping deadlocks cannot be realized
in the real-life robots either. Finally, the selection of the adequate cost
function that provides an efficient solution to the multi-robot problem is
not always trivial.

2.2.3 Simulation-based methodologies

On the other side of the spectrum, are the simulation-based multi-robot
methodologies [51–53]. The idea behind these approaches is the following:
first a parametrized decision-making mechanism is devised for generat-
ing on-line the robot decisions, with different choices for its parameters,
leading to different decision-making mechanisms. Then, realistic simula-
tions or similar tools are used in order to optimize the parameters of the
decision-making mechanism. Thus, conceptually, many of the optimization
computations that otherwise would take place on-line are “moved” off-line.
The drawbacks of such approaches are that, first, the simulations need
to cover a wide range of different realistic scenarios (and thus they may
become “expensive”) and, second, since the dimensionality of the optimiza-
tion problem is quite high, a large number of parameters is needed in order
to come up with an efficient decision-making mechanism.

2.2.4 Centralized vs. distributed

We close this sub-section by mentioning that, for most of the centralized
approaches, in all three classes, it is not clear how they can be extended
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to have a distributed nature. Furthermore, the majority of the distributed
multi-robot algorithms (e.g. [39,49,50]) exploit application-specific dynam-
ics, therefore their solutions cannot be generalized to a broader context. In
other words, if the problem objectives or the dynamics are changed, most
of the existing approaches must be redesigned from scratch, to adequately
tackle the alternated problem.
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3.1 Introduction

This chapter deals with the path planning problem of a team of mobile
robots, in order to cover an area of interest, with prior-defined obstacles.
In the literature, this problem is often referred to as coverage path planning
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(CPP) problem, but can also be found as sweeping, exhaustive geographical
search, area patrolling etc. This task is directly related with a plethora of
robotic applications, such as vacuum cleaning robots1 [54], autonomous
underwater vehicles [55,56], unmanned aerial vehicles [57], demining robots
[58], automated harvesters [59], planetary exploration [60], search and
rescue operations [61].

The usual abstraction of the problem, consists of a robot with an
associated tool (e.g. sensor, actuator), which is able to spatially cover
at least the size of the robot itself. Therefore, one of the most common
area representation techniques is to separate the field into identical cells
(e.g. in the size of robot), such that the coverage of each cell can be easily
achieved. Apparently, for any arbitrary shaped area, the union of the
cells only approximates the target region, thus this technique, which is
also adopted in our approach (see section 3.2), is termed as approximate
cellular decomposition. A comprehensive analysis of the different area
decomposition techniques along with the major representatives from each
class can be found in [62].

During the previous decade, researchers focus their effort to the afore-
mentioned single robot coverage planning problem (inside an already known
terrain), producing a lot of different approaches (e.g. [63–65]). One of the
dominant approaches is the spanning tree coverage (STC) algorithm [10],
which is able to guarantee an optimal covering path in linear time, con-
structing a minimum spanning tree for all the free cells. The term optimal
encapsulates that, the generated path does not revisit the same cell (non-
backtracking property), completely covers the area of interest and it achieves
all the above without any preparatory effort (the robot can be initiated
at any non-occupied cell). This major accomplishment comes with the
assumption that the operation area does not get “narrower” than the
double of the robot’s size. Our approach utilizes the STC algorithm, thus
it inherits this requirement, which is more formally described in the section
3.3 of the Thesis.

The recent advances in robotics technology, both in the hardware and in
the associated software, expand the variety of robots that can be deployed
for a coverage task. As a consequence, the usage of multi-robots’ teams
in the coverage path planning problem (forming the multi-CPP or mCPP
problem), has recently received a lot of attention. Unfortunately, the
mCPP problem was proven to be extremely more difficult to be adequately
addressed. As a matter of a fact, solving mCPP with the minimal covering

1irobot website http://www.irobot.com/

http://www.irobot.com/
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time has been proven to be NP-hard [66]. Previous investigations attempt
to overcome the NP nature of the problem by proposing algorithms that
solve a relaxed version of the original mCPP problem, mostly focusing only
on one of the main coverage objectives (see section 2.1 for more details).
Besides the optimality features that characterize a solution that have been
already defined from the single-CPP, here in mCPP problem, the challenge
of designing the paths in a way to fully exploit the available multi-robot
dynamics arises. In essence, this condition is one of the holy grails in
any multi-robot system, since the unlock of such a feature would allow
the fully cooperation of the robots with the ultimate utilization of their
capabilities. In many of the proposed approaches, the fully exploitation
of multi-robots’ dynamics is sacrificed for the sake of the main coverage
objective (completeness, non-backtracking). Additionally, in multi-robot
approaches, an often-omitting issue is the needed cost/time in order to
“transfer” the robots in their starting cells, excluding the initial robots’
location from the problem. Overall, the best of the proposed approaches
can achieve coverage time which can be 16 times greater than the optimal
one, in strictly polynomial time.

In the present chapter we propose a methodology that is able to deliver
the optimal solution for the mCPP problem - at least where one exists-
in terms of coverage time, without overlooking any of the aforementioned
aspects. In contrary to the traditional addressing of this problem [67]
(usually referred as allocate-then-decompose or decompose-then-allocate),
where the building and allocation of the tasks are tackled in a separated
fashion [18], a new method in which the building task is robot-oriented
is presented. Simultaneously, extended numerical analysis in realistic
environments indicates that the computational time is approximately
polynomial with respect to the (grid size × number of robots). In essence,
the original mCPP is transformed into an optimization problem, where
the satisfaction of a well-defined set of constraints will eventually give rise
to the optimal solution. More precisely, the proposed scheme is separated
into two phases.

• First, the available cells are divided into distinct classes, as many as
the number of robots. The aim of this clustering is to preserve the
following attributes a) the complete coverage, b) the operation without
any preparatory effort and - most importantly - c) the fully exploitation
of multi-robots dynamics. In the heart of the proposed algorithm,
lies the Divide Areas based on Robot’s initial Positions (DARP)
algorithm which is able to produce the optimal cells assignment
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with respect to the initial positions of the robots. The later can be
achieved by employing a - specifically tailored to the problem at hand
- cyclic coordinate descent approach [68] with the known convergence
properties.

• During the second phase, and in a completely distributed manner,
the paths inside each robot’s cluster are designed by utilizing the
STC algorithm.

The outline of this chapter is as follows. The mCPP problem is trans-
formed into an optimization problem in section 3.2, introducing all the
essential notation. In section 3.3 are briefly summarized the main steps of
the STC algorithm, regarding the optimal solution of CPP problem. The
findings of that section are going to be utilized in order to relax the original
mCPP problem in section 3.4. On the same section, are formally described
the essential conditions of the optimal solution. In section 3.5 is proposed
the DARP algorithm, with a comprehensive discussion about its perfor-
mance. The complete scheme for the mCPP problem is outlined in section
3.6. As proof of concept, in section 3.7 is presented the performance of the
proposed scheme in comparison with two of the state-of-the-art algorithms,
regarding the mCPP problem. Finally, the concluding remarks are drawn
in section 3.8.

3.2 Multi-Robot Coverage Path Planning Formula-
tion

For ease of understanding, it is assumed that the terrain to be covered is
constrained within a rectangle2 in the (x,y)-coordinates and it is discretized
into finite set of equal cells, the number of which represent both the level
of required spatial resolution and the sensing capabilities of the robots.

U = {x,y : x ∈ [1, rows],y ∈ [1, cols]} (3.1)

where rows, cols are the number of rows and columns after the discretiza-
tion of the terrain to be covered. Apparently, the number of all the terrain’s
cells is given by n = rows× cols.

It is also assumed that there are no obstacles placed in a-priori known
positions of U. The set of unknown obstacles is represented as:

B = {(x,y) ∈ U : (x,y) is occupied} (3.2)
2However, the problem formulation along with the proposed algorithm could be straightfor-

wardly applied to different area shapes, not necessarily convex
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Robots cannot traverse obstacles, thus the overall set of cells that need to
be covered is reduced to:

L = U \B (3.3)
and the number of cells to be covered is reduced to l = n−no

Definition 1 Two cells (xi,yi) and
(
xj,yj

)
are considered adjacent if:

‖xi − xj‖+ ‖yi − yj‖ 6 1 (3.4)

(Henceforth, we use ‖·‖ to denote the Euclidean norm ‖·‖2)

As typical in many CPP and mCPP approaches (e.g. [8,9,13,66,69,70]),
it is assumed that the robot can perfectly localize itself inside U and at
each time-stamp, it can travel from its current cell to any unblocked (∈ L)
adjacent cell, without any motion uncertainty.

Definition 2 As valid robot path of length m is considered every sequence
of cells

X = ((x1,y1) , . . . , (xm,ym))

where the following constraints are hold

• (xi,yi) ∈ L, ∀ i ∈ {1, . . . ,m}

• every two sequential cells, i.e. (xi,yi) and (xi+1,yi+1), are adjacent
(Definition 1), ∀i ∈ {1, . . . ,m− 1}.

Moreover, a closed path of length m is a path, as defined in Definition
2, where the additional condition is hold

• (x1,y1) and (xm,ym) are adjacent

The robot positions are defined as:

χi(t) = (xi,yi) ∈ L, ∀i ∈ {1, . . . ,nr} (3.5)

where t denotes the specific time-stamp of the coverage path and nr denotes
the number of operational robots. The (given) initial position of the i-th
robot inside L is represented as χi(t0).

Having the above formulation in mind, the mCPP problem can be
transformed to calculate the robots’ paths X∗i ∀i ∈ {1, . . . ,nr} so as,

minimize
X

maxi∈{1,...,nr} |Xi|

subject to X1 ∪X2 ∪ · · · ∪Xnr ⊇ L

(3.6)

where |Xi| denotes the length of the path Xi.
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3.3 Single Robot Coverage inside Unstructured En-
vironment

Disregarding for the moment the problem of optimal movement for a team
of robots, let us consider the problem of covering a continuous unstructured
area, utilizing only a single robot. Following the notation of optimization
problem in equation (3.6), the aforementioned single robot CPP can be
defined as:

minimize
X1

|X1|

subject to X1 ⊇ L

(3.7)

It has been proved in the literature that the CPP problem has an O(n)
algorithm [10], where n is the size of grid, that is able to produce always
the optimal solution. In other words, the Spanning Tree Coverage (STC)
algorithm is able to construct the minimum path that coverages all the
operation area L, starting from any arbitrary unoccupied cell.

Figure 3.1 illustrates the basic steps of an example designing trajectory.
In this approach, the terrain’s cells are grouped into large square-shaped
cells, each of which is either entirely blocked or entirely unblocked, and
contains four of the initially discretized cells (Figure 3.1(b)). More precisely,
the obstructed areas cannot be smaller than 4 times the size of grid’s cell
and this condition consists of the only algorithm’s requirement. As next
step, every unobstructed large cell is translated into a node (Figure 3.1(b))
and for every adjacent cell, an edge is introduced. For the resulting graph,
a minimal spanning tree is constructed, using any minimum-spanning-tree
algorithm, such as Kruskal’s or Prim’s algorithms [71], as it is illustrated
in Figure 3.1(c). The robot then circumnavigates the spanning-tree along
a (counter) clockwise direction (Figure 3.1(d)). The circumnavigation of
the spanning tree generates a simple closed path X∗1, producing an optimal
-in terms of coverage time- solution.

3.4 Reduce the original mCPP Problem
Utilizing the findings of STC algorithm for the case of one robot, the
original mCPP problem, as defined in (3.6), can be reduced to

minimize
L

maxi∈{1,...,nr} |Li|

subject to L1 ∪ L2 ∪ · · · ∪ Lnr ⊇ L

(3.8)
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(a) Initial cells’ discretization, robot’s cell and
obstacles

(b) Subdivide the terrain into large square
cells of 4 cells and represent them as nodes

(c) Construct a Minimum Spanning Tree for
all the unblocked nodes

(d) Apply the ST to the original terrain and
circumnavigate the robot around it

Figure 3.1. Spanning Tree Coverage Algorithm, sample execution

where L1,L2, . . . ,Lnr denote the robot sets (and not strict paths). As
next step, nr instances of the STC algorithm could be employed -in a
completely distributed manner- in order to calculate the robots’ exact
paths inside these sets (problem (3.7)). Therefore, the exploitation of STC
algorithm allows the removal of the severe adjacency constraint (Definition
2) regarding the produced robot sets. In other words, only the problem
of building the Li sets, without any concern about the actual robot’s
movement, inside the L world has to be addressed.

In the rest of this section we investigate the fundamental conditions,
that have to be hold regarding the Li sets, so as the optimal solution to
the overall mCPP (3.6) problem to be guaranteed.

Definition 3 A selection {L1,L2, . . . ,Lnr} composes an optimal solution
for the mCPP, iff
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1. Li ∩ Lj = ∅,∀i, j ∈ 1, . . . ,nr , i 6= j

2. L1 ∪ L2 ∪ · · · ∪ Lnr = L

3. |L1| ≈ |L2| · · · ≈ |Lnr |

4. Li is connected ∀i ∈ 1, . . . ,nr

5. χi(t0) ∈ Li

The first condition secures that every cell must be contained strictly
in one robot’s set, constituting the non-backtracking guarantee for the
produced solution. The second condition states that the union of all Li
sets must contain every unblocked cell of the area to be covered (3.3) and
depicts the fundamental coverage objective of completeness. The third
condition establishes the fully exploitation of the multi-robot dynamics,
by making certain that the number of cells |Li| in each robot’s set are
more or less the same3. The forth condition declares that the cells inside
each robot’s set Li should be compact, forming a solid sub-region. In
other words, this condition ensures that the division is absolutely fair and
guarantees a seamless navigation scheme, inside spatially cohesive areas.
According to that statement, no robot may spend extra/non-inclusive time
to travel between unconnected areas. The final condition refines that the
initial position of each robot χi(t0) must be contained on its own set Li,
providing the ultimate layer of effectiveness, ensuring zero preparation time
and energy. Any algorithm that is able to construct the Li sets, ensuring
the Definition’s 3 conditions, can be utilized (in combination with the
STC) to construct optimal solutions to the original mCPP problm (3.6).

Regarding to the existence of these solutions, it has been proved [72]
that, a fair partition, which does not require convex pieces, always exists
for any polygon and any number of partitions. The problem which is
formulated here is a variation of the aforementioned one, with an extra
condition, that indicates the inclusion of any arbitrary point of the polygon
inside each partition. Apparently, the above problem cannot always have a
solution and strongly depends on the arrangement of the arbitrary points,
that need to be included in the produced fair partitions. The overall

3This ambiguity is introduced mainly for two reasons. On one hand, it might be impossible
to perfect divide the number of cells to be covered |L| with the number of robots nr. On
the other hand, even in cases where the perfect division is possible the initial configuration -
placement of both the robots and obstacles - may raise limitations according to the optimal
solution.
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formulation of the problem along with proposed algorithm are referred to
cases where at least, one optimal solution exists4.

3.5 Divide Areas based on Robots Initial Positions
(DARP)

In this section is described the DARP (Divide Areas based on Robots Initial
Positions) algorithm, a specifically tailored, optimality preserving technique
that divides the terrain into nr robot-exclusive regions. To start with,
DARP algorithm adopts the following cell-to-robot assignment scheme.
For every i-th operational robot an evaluation matrix Ei is maintained.
This evaluation matrix Ei expresses the level of reachability (e.g. distance)
between the cells of L and the i-th robot’s initial position χi(t0). During
each iteration, the assignment matrix A is constructed as follows:

Ax,y = argmin
i∈{1,...,nr}

Ei|x,y, ∀(x,y) ∈ L (3.9)

Afterwards, each robot’s region Li can be computed straightforwardly by
the assignment matrix A as follows:

Li = {(x,y) ∈ L : A(x,y) = i} , ∀i ∈ {1, . . . ,nr} (3.10)

Additionally, the number of assigned cells per robot can be defined as
the cardinality of the Li set

ki = |Li| , ∀i ∈ {1, . . . ,nr} (3.11)

By adopting the aforementioned cells assignments policy, regardless of
the robots’ evaluation matrices E, the first, second and fifth conditions
of Definition 3 are always satisfied. Concretely, one cell can only be
assigned to one robot (first condition), every cell has been assigned to
some robot’s operation plan (second condition) and it is assumed that the
initial robot positions are always assigned to the corresponding robot area
(fifth condition). In a nutshell, DARP algorithm is an iterative process,
which appropriately modifies the robots’ evaluations Ei, in a coordinated
fashion, in order to meet the two remaining -and in many cases conflicting-
requirements.

4The interest reader is kindly referred to the appendix A for a proper classification of such
cases where the optimality conditions cannot be met.
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Furthermore, the aforementioned cells’ assignment policy automatically
undertakes an additional task related to the robots’ trajectories time-
scheduling. If it is allowed for robots to occupy the same cells, then a
fine-grained analysis should take place to prevent robot-to-robot collisions.
This fact could result in a serious downgrade regarding the quality of the
overall solution, even in case where the sets Li are equal.

3.5.1 Equally Divide the Space

Initially, the robots evaluation matrices Ei contain distance only informa-
tion:

Ei|x,y = d (χi(t0), [x,y]τ) , ∀i ∈ {1, . . . ,nr} (3.12)

where d(·) denotes the chosen distance function (e.g. Euclidean). Thus,
the initial assignment matrix A (3.9) should be a classical Voronoi diagram.

The DARP algorithm’s core idea is that each evaluation matrix Ei can
be appropriately “corrected” by a term mi as follows:

Ei = miEi (3.13)

where mi is a scalar correction factor for the i-th robot.
The third condition of Definition 3 is equivalent with the minimization

of the:

J =
1
2

nr∑
r=1

(ki − f)
2 (3.14)

where f denotes the global “fair share”: f = l/nr (number of unoccupied
cells divided by the number of robots).

A standard gradient descent method for updating m

mi = mi − η
∂J

∂mi
, η > 0, ∀i ∈ {1, . . . ,nr} (3.15)

can be employed, in an attempt to minimize the value of the cost function
(3.14). When attempting to apply (3.15), two shortcomings arise. At first,
∂J/∂mi cannot be computed algebraically, as the analytical form that
relates J with mi is not available. On the other hand, there is no guarantee
that J has only one (global) minimum.

To overcome the above problems, a cyclic Coordinate Descent (CD)
methodology is adopted [68, Algorithm 1]. Coordinate descent algorithms
solve optimization problems by successively performing approximate mini-
mization along coordinate directions or coordinate hyperplanes. The global
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Figure 3.2. DARP algorithm flowchart - Divide Areas based on Robots Initial Positions
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cost function is minimized cyclically over each of one of the coordinates
while fixing the remaining ones at their last updated values. Each such
subproblem is a scalar minimization problem, and thus can typically solved
more easily than the full problem.

To start with, the global minimum of this function will always be in
case where k1 = k2 = · · · = knr = f. Therefore, the global minimum
of (3.14) can be obtained if we solve nr single dimension optimization
problems with the following objective function:

Ji =
1
2
(ki − f)

2 (3.16)

By applying the above transformation, we can achieve the following:
First and foremost, the above search is performed in local-minima free

space.

Lemma 1 All sub-problems of (3.16) are convex to the corresponding
controllable parameter mi.

Proof. Let’s assume that the i-th robot during the previous iteration, based
on its evaluation matrix Ei, occupied less cells than the desirable threshold
(< f). It is obvious from (3.13) and (3.9) that a “small” decrease in the
corresponding correction factor, mi (< 1), will lead to an increase in the
number of assigned cells ki, assuming that the other robots’ evaluation
matrices E remain the same. Therefore, the corresponding objective
function Ji (3.16) will be decreased. Although, if we “over-decrease” the
mi factor “many” cells will be assigned to the i-th robot. Now, the Ji will
start to rise again, as the ki will be greater than the f. From this point and
after, if we continue to decrease mi, the i-th robot will be assigned to more
and more cells, as ki can only be increased in response to mi decrease.
The value of Ji is saturated when all the available cells5 (l−nr + 1) have
been assigned to the i-th cell, and further decreases of mi cannot affect
neither ki nor Ji. Hence, Ji will monotonically be increased, as mi is
decreased until the maximum possible Ji |ki=l−nr+1 = 1

2

(
(l−nr)(nr−1)

nr

)2
.

Therefore, the previously encountered minimum is the global one. The
proof continues to hold if, instead, we had assumed that the i-th robot
had been assigned to more cells than f.

5The available cells are l− nr + 1 as the initial robot cells are a-priori allocated to the
corresponding robot.



3.5 Divide Areas based on Robots Initial Positions (DARP) 45

Additionally, the update rule of mi can be straightforwardly calculated
for each objective function (3.16) separately as:

mi = mi − η
∂Ji
∂mi

= mi − η (ki − f)
∂ki
∂mi

(3.17)

Due to the nature of the problem, the changes in ki with respect to mi

will always be negative (see proof in Lemma 1) and they are almost identical
for each robot (for a given sub-problem (3.16)). Additionally, two sets
of evaluation matrices {E1, . . . ,Enr} and {αE1, . . . ,αEnr}, where α denotes
any positive constant, correspond to the identical assignment matrices
(3.9). Therefore, the influence of |∂ki/∂mi| can be securely omitted, and
the final update policy can be approximated as follows:

mi = mi + c (ki − f) (3.18)

where c denotes a positive tunable parameter.

3.5.2 Build Spatial Connected Areas

Although, the aforementioned procedure can be easily converge to share
the available cells L among the different robots, it cannot guarantee the
continuity of each robot’s sub-region (condition 4, Definition 3). In oder
to deal with such situations, for every i-th robot that occupies more than
one distinct regions the following matrix is introduced

Ci|x,y = min (||[x,y] − r||) − min (||[x,y] − q||) ,

∀r ∈ Ri, q ∈ Qi

(3.19)

where Ri denotes the connected set of cells where the i-th robot actual
lies in (χi(t0)) and Qi denotes the union of all other connected sets,
which have been assigned to the i-th robot but they do not have spatial
connectivity with Ri set. In a more abstract conceptualization, the Ci is
constructed in a way, to reward the regions around the i-th robot location’s
subset, and to penalize the regions around other unconnected subsets,
constructing gradually a closed-shape region. If all the assigned cells to
i-th robot belong to the same closed-shape region, the Ci is set to be the
all-one-matrix.
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The final update for the i-th evaluation matrix, is calculated as

Ei = Ci � (miEi) (3.20)

where � denotes the element-wise multiplication. The findings of the
previous subsections are illustrated in a flowchart format, in figure 3.2.

(a) T = 0 (b) T = 40 (c) T = 80

(d) T = 120 (e) T = 200 (f) T = 260

Figure 3.3. Progression of the robots sub-regions over iterations

3.5.3 Performance Discussion

Although simple in concept, the DARP algorithm aims to provide the
optimal cells’ assignment, in cases where at least one exists (according to
Definition 3). A sample execution is illustrated in Figure 3.3, where the
terrain is constituted of 42× 42 cells and the number of robots is nr = 5.
The initial robots’ positions were squeezed inside a sub-region of the whole
operation area, at the left bottom space of the grid, with dimension 10× 10
cells. Each sub-figure illustrates the condition of the assignment matrix
A (3.9) at the corresponding iteration. Apparently, the algorithm was
terminated after 260 iterations, fulfilling all the conditions of Definition 36.

It is worth highlighting, that contrary to robot’s evaluation matrix Ei
which is continuous, the produced sub-areas that are finally assigned to
each robot, may be arbitrary unconnected (at least temporary, e.g. figure

6The interested readers are kindly referred to http://tinyurl.com/DARP-live to watch an
additional recorded execution of the DARP algorithm.

https://youtu.be/YF2PLP9Q6Vo
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4.3(b)) non-convex areas. In fact, this DARP algorithm’s key feature,
allows the gradually inclusion to each robot’s sub-region, of any arbitrary
located cell. More precisely, DARP algorithm is capable of escaping the
local minima by temporarily violating the condition about the connectivity of
the each i-th robot assignment matrix. Afterwards, the algorithm gradually
eliminates the presence of unconnected areas, by reinforcing the robot’s
evaluation Ei around the original (the one that the robot actually lies in)
sub-area. By the time, the connectivity inside the exclusive robot sets Li
is restored, the evaluation matrices Ei will have completely changed their
forms, and ideally towards to the optimal cells assignment.

Overall, the proposed algorithm diverges from the general class of local
search algorithms in the sense that, it changes its current state, mainly
based on the global optimal one and not only by evaluating information
from the current and the candidate states.

3.5.4 Computational & Memory Complexity Analysis from an
Approximation Point of View

The memory needs of the algorithm can be calculated straightforwardly,
as it utilizes a constant number β of matrices with dimensions (nr ×n).
In other words, the algorithm’s memory complexity is linear to the size of
input (nr ×n), i.e. O (β×nr ×n).

The main optimization loop performs α× nr × n operations, where
α is a constant number, resulting in O (α×nr ×n)7 computational com-
plexity. However, the number of times which the main optimization loop
is executed (MaxIter) is not constant or linear, but it depends on the
specific characteristics of the current problem in a non-linear fashion. As
it is not possible to find the closed form that relates the maximum needed
(main optimization loop) iterations with the number of robots nr, initial
deployments χi(t0) and the grid size n, the following approximation scheme
for the algorithm’s computational needs is adopted.

A series of simulations were conducted in order to measure the MaxIter
(main optimization loop) iterations that were needed for the construction
of the optimal solution (Definition 3). For each configuration (nr and
n) the results were validated by repeating the experiment with different,
randomly chosen, initial χi(t0), in order to be able to approximate the
MaxIter for the worst-case scenario.

Please note that, it is practically infeasible to compute exhaustively,
7Please note that, in both complexity calculations, there is an additive constant which is

omitted, due to its negligible influence
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Figure 3.4. Approximation on DARP’s complexity, a comparison with known polyno-
mial surfaces

the actual worst-case for each configuration, due to the vast number of
possible combinations of the initial robots’ positions. Nonetheless, in every
different set-up the number of randomly created instances was proportional
to the size of input parameters (nr ×n). By doing so, it is ensured that
the computed worst-case complexity is representative of the number of
possible occurring configurations. The number of the experiments for each
configuration starts form 50 for {nr = 3,n = 500} and reaches up to 5000
for {nr = 20,n = 5000}, constructing a pool of more than 120000 different
experiments.

For each different {nr,n} scenario, the worst-case (maximum) of the
needed iterations was extracted. In order to visualize the evolution of
the worst-case computational needs (MaxIter) with respect to the input
size, a polynomial least squares curve fitting technique is applied to these
extracted values. The produced surface is illustrated with blue color in
figure 3.4, where the operations’ needs growth, with respect to the input,
is representing both in linear and logarithmic scale. Moreover, and in
order to evaluate the produced complexity results, a number of polynomial
surfaces is utilized. More specifically, with yellow, magenta and green
color are illustrated the complexity curves in cases of f1(nr,n) = n2

r ×n2 ,
f2(nr,n) = n3

r ×n2, and f3(nr,n) = n2
r ×n3, respectively. The evidences

of this representation indicate that DARP’s complexity is at most cubic
with respect to the input of the problem (nr ×n), as the approximation
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on the complexity curve is strictly bounded under the n3
r ×n2 curve, at

least until the maximum simulated parameters nr = 20 and n = 5000.
Concluding this section, it is worth mentioned that the proposed algo-

rithm cannot bypass the NP-nature of the mCPP problem, but it provides
an approximately polynomial algorithm until a specific (practical inter-
esting) input. If both the size of the robots and number of the cells grow
beyond the aforementioned order of magnitude of the input, the algorithm
may lose its polynomial behavior.

3.5.5 Beyond the classical mCPP

The proposed DARP algorithm is an optimization based one, which allows
the inclusion of other secondary objectives, depending on the final multi-
robot application, such as robot’s subareas smoothing etc., by just revising
the appropriate performances’ criteria. In the literature, the problem of
mCPP is usually defined as in section 3.2, where it is desirable to produce
balanced paths, in order to exploit all the available robots’ capabilities.
However, there might be cases where specific robots’ characteristics (e.g.
sensing module, battery life, etc.) impose different utilization portions
among the different robots. The proposed approach is able to straightfor-
wardly encompass this additional information, by appropriately modifying
the calculation of Ji (3.16). More precisely, the objective function for the
i-th robot is going to alternate as

Ji =
1
2
(ki − pi)

2 (3.21)

where pi is the corresponding portion of the map that the i-th robot has
to covered based on its capabilities or limitations

(∑nr
i=1 pi = 1

)
.

However in order to be in-line with the ordinary mCPP formulation we
limit our simulation evaluation (section 3.7) only to scenarios where an
equal cells’ division, between the robots, is considered desirable.

3.6 Overview of the proposed multi-robot coverage
path planning algorithm

This section summarizes the complete algorithm for mCPP problem (3.6),
by fusing the findings of the DARP and STC algorithms. The proposed
algorithm is separated into two phases: During the first phase, the DARP
algorithm divides the cells of L set into nr exclusive areas Li, for each
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available robot, as explained in section 3.5. The outcome Li of that process
serves as the operational area for each robot separately (section 3.3).

After the applying of DARP algorithm and the corresponding pro-
duction of Li sets, the original multi robot optimization problem (3.6) is
downgraded to nr single robots CPP problems, alleviating its explosive
combinatorial complexity [66]. Each one of these problems can be expressed
as:

minimize
Xi

|Xi|

subject to Xi ⊇ Li

(3.22)

where Xi denotes a robot path as defined in Definition 2. As shown in
section 3.3 this class of optimization problems (single robot inside grid
connected environments) can be solved in an optimum manner (optimal
solution - polynomial time), utilizing the STC Algorithm.

Even though the final path {X1,X2, . . . ,Xnr} construction takes place in
a fully distributed manner, the union of the produced solutions is actually
an optimal solution for the eq. (3.6) problem, without any compromise
on the quality or the generality of the solution. In essence, this can be
attained by the original construction, during the first phase (section 3.5),
of the Li sets, ensuring that the conditions of the Definition 3 are satisfied.
The aforementioned feature of the algorithm not only allows the fully
parallelization of the algorithm, but dramatically reduces the complexity of
the initial mCPP problem to the order of magnitude of the STC algorithm.

Figure 3.5 depicts an example execution of the proposed algorithm.
Sub-figure 3.5(a) illustrates the initial robots’ positions and the obstacles’
placement. Sub-figure 3.5(b) visualizes each robot exclusive area, as
calculated by the proposed DARP algorithm. Sub-figure 3.5(c) depicts
the construction of the minimum spanning trees inside these divided areas.
Finally, the proposed algorithm let the robots move along the path that
circumnavigates the corresponding spanning tree, as is shown in sub-figure
3.5(d).

3.7 Simulation Results
This section presents a comparison study between the proposed DARP+STC
algorithm and two of the state-of-the-art methods (“MFS” and “Optimized
MSTC” see related work). In order to produce comparable results, we
adopt the same simulation set-up as in [12]. More precisely:
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Terrain Robots Clustering Ideal Max DARP+STC MFC Optimized MSTC

Max (Min) Ratio Max (Min) Ratio Max (Min) Ratio

Empty 2 30 4801 4803 (4799) 1.001 4878 (4731) 1.02 5337 (4410) 1.11

2 60 4801 4803 (4799) 1.001 4886 (4720) 1.02 5513 (4241) 1.15

2 none 4801 4803 (4799) 1.001 4888 (4725) 1.02 5602 (4168) 1.17

8 30 1200 1203 (1199) 1.003 1399 (838) 1.17 3817 (45) 3.18

8 60 1200 1203 (1199) 1.003 1415 (904) 1.18 3539 (93) 2.95

8 none 1200 1203 (1199) 1.003 1394 (956) 1.16 3281 (146) 2.73

14 30 685 687 (683) 1.006 841 (431) 1.23 3756 (5) 5.48

14 60 685 687 (683) 1.006 819 (522) 1.20 3461 (16) 5.05

14 none 685 687 (683) 1.006 830 (513) 1.21 3072 (40) 4.48

20 30 479 483 (479) 1.008 615 (307) 1.28 3685 (3) 7.69

20 60 479 483 (479) 1.008 604 (332) 1.26 3439 (9) 7.18

20 none 479 483 (479) 1.008 604 (321) 1.26 2867 (18) 5.99

Outdoor 2 30 4321 4321 (4321) 1 4380 (4269) 1.01 4772 (4031) 1.10

2 60 4321 4321 (4321) 1 4382 (4266) 1.01 4854 (3954) 1.12

2 none 4321 4321 (4321) 1 4377 (4269) 1.01 4923 (3903) 1.14

8 30 1079 1082 (1078) 1.003 1263 (789) 1.17 3561 (26) 3.30

8 60 1079 1082 (1078) 1.003 1278 (790) 1.18 3229 (70) 2.99

8 none 1079 1082 (1078) 1.003 1247 (873) 1.16 3099 (94) 2.87

14 30 616 620 (616) 1.006 746 (450) 1.24 3452 (6) 5.60

14 60 616 620 (616) 1.006 750 (482) 1.22 3228 (20) 5.24

14 none 616 620 (616) 1.006 746 (464) 1.21 2819 (37) 4.58

20 30 431 434 (430) 1.007 572 (280) 1.33 3437 (3) 7.97

20 60 431 434 (430) 1.007 557 (285) 1.29 3140 (9) 7.29

20 none 431 434 (430) 1.007 551 (296) 1.28 2740 (18) 6.36

Table 3.1. Cover time (in terms of path length) for DARP+STC, compared with MFC
and Optimized MSTC
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(a) Initial cells discretization, robots cell and
obstacles

(b) DARP outcome - robots’ exclusive areas

(c) Constructing Minimum Spanning Trees
for each one of the robots sets

(d) Final Paths, designed to circumnavigate
the MSTs

Figure 3.5. DARP+STC Proposed Approach, sample execution with 24x24 grid size,
9 robots and 100 obstacles

• The size of the terrain was always [rows, cols] = 98×98.

• We considered two kinds of terrains: 1) The empty terrain [empty]
and 2) the one, which has the 10% of its cells occupied by obstacles
[outdoor]. The obstacles’ arrangement followed a random uniform
distribution.

• The number of robots varies from 2, 8, 14 to 20 robots.

• The robots initial placement can take three different types, according
to their in-between maximum distance (clustering). More precisely,
the maximum distance between two robots can be at most 1) 30% [30]
or, 2) 60% [60] of the maximum terrain’s dimension correspondingly,
and 3) without any distance constraint (free selection) [none].
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In order to obtain a fair comparison with MFC and Optimized MSTC
algorithm, we repeated each scenario 100 times. The results for each
combination of different evaluation scenario and algorithm, are illustrated
in Table 3.1, where it is reported the maximum [Max] and minimum [Min]
coverage time for all robots, in terms of paths lengths. Simultaneously, for
each scenario we provide the idealized coverage time [Ideal Max], which
represents the optimal solution to the problem. In other words, this
value is simply calculated by dividing the number of unoccupied cells
with the number of robots. Apparently, the larger deviations from the
ideal coverage time, the bigger the difference between the robots’ paths,
resulting in unbalanced, sub-optimal routes. The overall scoring for each
scenario per algorithm, against the ideal coverage time, is depicted in
[Ratio] column and reports the ratio of actual (maximum) traveled path
and the ideal coverage time.

A direct observation is that the performance of the proposed algorithm
DARP+STC seems to be immune to the number of robots, obstacles
and the initial clustering of the robots, as it performs with almost the
same ratio over the different scenarios. Additionally, all the results are
close to the [Ideal Max], and the maximum difference between two robots
path is at most 4 cells, i.e.

∥∥|Xi|− ∣∣Xj∣∣∥∥ 6 4, ∀i, j ∈ 1, . . . ,nr. The
above effectiveness bound is straightforwardly incoming from optimality
guarantee of the proposed area division algorithm (DARP). Overall, these
findings seal experimentally, the performance of the proposed algorithm.

The afore-mentioned optimal performance does not come without short-
comings. In all cases, initial configurations that lead to sub-optimal results
are discarded from the pool of test cases, while both the other two algo-
rithms are able to straightforwardly produce some sub-optimal operation
plans. A proper categorization of the cases where optimal solutions cannot
be obtained, is provided in appendix A, where also preliminary solutions,
in-line with the proposed approach, are also presented.

3.8 Conclusions
The proposed approach orchestrates the optimal coordination of a multi-
robot team, so as to completely cover an area of interest. During the
preliminary analysis, the underlying mCPP problem is translated into a
constraint satisfaction problem, by formally define the exact attributes
that have to be hold in order to achieve the optimal performance. In
heart of the proposed approach lies the DARP methodology, a search
algorithm, which finds the optimal cells assignment for each robot utilizing
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a cyclic coordinate descent approach, which takes into account both the
robots initial positions and the obstacles formation. The outcome of the
DARP algorithm constitutes a set of exclusive operation areas for each
mobile robot. These well-defined regions, are forwarded to each robot’s
planner, where by employing STC algorithm, the exact route that covers
the assigned area is calculated. The overall navigation scheme achieves
to traverse the complete operation area, without backtracking in already
visited areas, starting from the exact initial robot positions. To the best
of our knowledge, no other method from the literature exhibits all the
aforementioned features at the same time.
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4.1 Introduction

Recent technological advances have made the usage of teams of autonomous
vehicles more appealing in a variety of missions [73], which may include
harbor security [74–76], post-disaster infrastructure inspection [77, 78],
underwater archaeology [79,80], continuous infrastructure monitoring to
prevent accidents [81], habitat mapping [82], spy missions, unmanned
weapon and other military activities [83] as well as agricultural activities
such as example paddy monitoring and spraying [84,85]. In all the afore-
mentioned missions there are several factors that affect the performance of
the robot (in the case of a single vehicle) or of the overall team (in the case
of a team of robots operating simultaneously). These are related with the
technological limitations of the hardware which is used and the method-
ologies that process and fuse data to obtain valid conclusions related with
the actual robot performance. A key element of success in almost every
mission is the ability to produce valid maps by utilizing all the available
resources.

There are, basically, two different problems that the team of robots faces
when deployed in missions such as the ones mentioned above. The first
of these problems has to do with the ability of the robots to process their
sensor measurements so as they create accurate maps of the environment.
As creation of accurate maps requires the robots to “know where they
are”, such a problem is also known as the Simultaneous Localization and
Mapping (SLAM) problem, i.e., the problem of processing the robots’
sensor measurements so as to simultaneously identify “where they are” and
create the map of the external environment. The second of the problems
has to do with “which trajectories the robots have to follow”, i.e., the
problem1 of trajectory generation for the robots so as to maximize SLAM
efficiency.

Most of the research work has concentrated on the problem of SLAM (in
case of single-robots) or Cooperative SLAM (C-SLAM) in case where a team
of robots is deployed. Very powerful SLAM and C-SLAM methodologies
have been proposed recently and have successfully demonstrated in real-life
situations [86–88]. Despite, however, these advances, the vast majority
of missions rely on pre-specified robot trajectories. In other words, the
trajectory the robot has to follow is designed off-line, before its actual
deployment. As the robot is called to map a partially known or, in some

1The problem of multi-robot trajectory generation for maximizing SLAM efficiency is also
referred in the literature as exploration or optimal motion strategy. In the rest of this chapter,
these terms will be used interchangeably.
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cases, a totally unknown area, off-line designing of the robot trajectories
may become quite problematic: first of all, the off-line design is quite
likely to “miss” areas of crucial information; moreover, it may lead the
robot to “waste” time mapping areas of little information. For this reason,
in practice, robot-based mapping is accomplished by employing a costly
and tedious repetitive procedure: firstly, an original trajectory is designed
off-line, the robot is then deployed and maps the area following to the off-
line designed trajectory, then based on the created map a new trajectory
is designed off-line again, the robot is deployed according to this new
trajectory, and so on. Apart from the fact that such a procedure is costly
and tedious, it renders prohibitive the deployment of robot in time-critical
mapping missions or in cases where there are limited resources available,
such as detection of sunken drums leaking chemicals or search-and-rescue
missions. Most importantly, off-line generation of the robot trajectories
cannot take advantage and exploit the cooperative capabilities in case a
team of robots is employed. Typically, multi-robot deployment for mapping
purposes employ again pre-specified trajectories with no or little interaction
between the robots or, in the best case, the robots communicate with each
other so as to improve their localization estimates and/or to make sure
that they are moved in certain formation. However, full exploitation of the
cooperative capabilities of a multi-robot system cannot be accomplished by
having the robots moving along pre-specified trajectories or in formation:
the cooperation between more than one robots can speed up considerably
the overall mapping process, by having the robots coming closer in areas
of high importance and by having the robots sharing sensor measurements
and mapping information.

To overcome the shortcomings of off-line trajectory generation, many
different approaches have been proposed which attempt to generate in
real-time the robots’ trajectories so as to maximize the overall C-SLAM
efficiency, see chapter 2 for more details. There are, however, several
theoretical and practical limitations that prevent these approaches from
becoming a generic and practicable tool that will provide efficient trajectory
generation: the fact that trajectory generation for maximizing SLAM effi-
ciency is a difficult-to-be-solved optimization problem, the strong reliance
of trajectory generation to the particular SLAM methodology employed,
the highly non-linear nature of sensor noise and the limited communication
capabilities of the robots are among the most important of such limitations.
In this chapter, we propose and evaluate both using theoretical analysis
and simulations as well as real-life experiments a new methodology that
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attempts to overcome such limitations.
One of the most severe limitations of multi-robot trajectory generation

for maximizing SLAM efficiency is the fact that such a problem is an
NP-hard optimization problem. Most of the existing approaches employ
one-step-ahead optimization or relaxed versions of the NP-hard trajectory
generation optimization problem to overcome such a limitation. Such
approaches, however, may end-up being quite problematic. First of all, the
closed-form (i.e., analytical mathematical form) that relates the SLAM
efficiency to the overall multi-robot team dynamics is not easy to be
calculated. However, calculating of the analytical form of SLAM efficiency
is the least of the problems encountered: the most severe problem is
due to the fact that optimizing the SLAM efficiency may lead to severe
deadlocks or, mathematically speaking, to getting stuck into local maxima.
As a matter of fact, as we report in the next sections, one-step-ahead
optimization of the SLAM efficiency can lead to situations where the
robots get stuck to deadlocks even after they have accomplished only
10-20% of their mapping mission. A similar situation is also present if
relaxations to the original NP-hard problem are employed. Moreover,
any approach used for optimizing the SLAM efficiency has to deal with
another problem: as, typically SLAM algorithms are based on linearized
or approximate models for the sensor dynamics, optimizing the SLAM
efficiency does not guarantee that poor performance or, even, divergence
of the SLAM procedure is avoided.

To overcome all the above shortcomings and limitations, a new approach
is employed and analyzed in this chapter. According to this new approach,
the robots’ trajectories are calculated so as to optimize a transformed ver-
sion of SLAM efficiency: such a transformation guarantees that deadlocks
are avoided and, moreover, that the robots move towards minimizing the
effect of sensor non-linearities which, in turn, implies minimizing the prob-
lem of poor performance/divergence of the SLAM procedure. Theoretical
analysis establishes these properties and, moreover, simulation experiments
exhibit that the use of such a transformed version can improve significantly
the performance of the exploration scheme.

As in the case of SLAM efficiency, it is difficult – if not possible –
to obtain an analytical form for the transformed version of the SLAM
efficiency. To overcome such a problem, we employ Cognitive Adaptive
Optimization methodology (CAO), an adaptive optimization approach
that does not require the availability of analytical forms of the function to
be optimized [89–91]. It has to be emphasized that CAO – successfully im-
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plemented to the problem of multi-robot optimal surveillance coverage [2]
– is computationally simple and thus scalable. Both simulation experi-
ments and theoretical analysis establish that the use of CAO, combined
with the transformed version of the SLAM efficiency, guarantees efficient
performance of the overall exploration.

Apart from the limitations of existing approaches that have to do with
the complexity of the overall exploration problem, it has to be emphasized
that most of these approaches suffer from other shortcomings that render
their application in real-life quite difficult: for instance, some of these
approaches impose certain requirements for the robot communication/sens-
ing system and/or they strongly rely on a particular SLAM method. The
development of the proposed approach is performed so as to avoid the
above-mentioned shortcomings. As a matter of fact, rather than imposing
requirements in the communication/sensing system and the SLAM method-
ology employed, the philosophy of the proposed approach is “to do the best
it can” given the communication/sensing/ SLAM system, allowing even
cases where the multi-robot team comprises robots with mutually different
sensing capabilities or operating different SLAM algorithms. In such a
way, the addition/removal of a robot (with probably different sensing
capabilities than the existing ones or operating a different SLAM technique
than the other robots) is performed “automatically”.

A large worth-mentioned variation of this optimal one-step-ahead, class
exploits the idea of the frontier cell navigation (e.g. [42, 50, 92–95]), firstly
introduced by Yamauchi [96]. The majority of the one-step-ahead (greedy),
path planning approaches utilize that fundamental idea and in the most
cases they augment their solutions upon the frontier cell concept. Our
approach is not an exception, as the omission of this concept would seriously
compromise the overall successfulness of the mission. Over-and-above, the
proposed approach introduces a supplementary improvement, regarding to
frontier cell concept. In the proposed approach the next robots’ positions
are at most a predefined distance (which is directly related to the maximum
possible speed of the robots). This constraint in robots’ movement adds
an extra layer of efficiency in the sense that it strictly bounds the waiting
time for each robot, from the moment it reaches the desired waypoint
until the new one. Additionally, and in correspondence to the majority of
the members of this class, we further investigate the construction of the
objective function (section 4.3), adding secondary terms in order to avoid
undesirable deadlocked situations. But the development of another optimal
one-step-ahead technique is not the main contribution of this chapter.
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This chapter attempts to prove that even more complicated and unknown
problems of the ones that belong to the target group of that class can
be adequately addressed, problems where the objective/reward function
is not a metric that can be computed a-priori. Overall, the theoretical
contribution of this chapter should be classified as an approximately optimal
one-step-ahead approach and in particular in the model-free class.

We close this section by mentioning that real-life underwater sea-floor
mapping experiments were conducted using two AUV (Autonomous Un-
derwater Vehicles) in the port of Porto, Portugal. The experiments exhibit
the practicability and “ease-to-operate” of the proposed approach. Despite
the fact that, the theoretical approach (section 4.2) along with the sim-
ulation results have been made under communication constraints, where
at each time-step, every robot has to be at most a maximum distance
from its closest robot [42], in real-life experiments, it is assumed that the
robots’ modems can transmit/receive from the whole operation area. This
limitation is not unrealistic (at least until a specific order of magnitude in
the square meters of the operation area), taking for granted that in the
exhibited real-life experiments, the robots are able to transmit in each
time-step their measurements back to central station. Additionally, the
communication protocol that is used is well established in terms of the
modern communication methods’ [97–99] available bandwidth. The last
remark regarding to the communications is that the theoretical approach
along with the simulation results have been made independently on the
place where the new waypoints calculation is taking place (either on a
central command station or assuming a processor on one of the robots).
This feature leverages the proposed approach with the ability of a broader
appliance in robot’s mapping missions.

The rest of the chapter is organized as follows. In section 4.2 we
attempt to provide a description of the set-up of map construction using a
team of robots. In section 4.3 we formulate the problem of autonomous
navigation/exploration of a team of robots as an optimization problem,
while in section 4.4 we present the proposed CAO based approach which
allows the autonomous navigation/exploration of a team of robots. Finally
details simulations that present the applicability of our approach are
presented in section 4.5 while in section 4.6 we present how our approach
was implemented as a plug-and-play tool for the navigation of a set of real
autonomous underwater vehicles in the area of Oporto’s Harbor in Portugal.
Some concluding remarks and ideas for future research are discussed in
section 4.7.
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4.2 The Set-Up
In this section, we describe with the set-up assumed in this chapter, for
map construction using a multi-robot team of NR robots, where NR denotes
the number of robots.

4.2.1 Optimal Quantized Map

Without loss of generality, let us assume that the area to be mapped is
constrained within a rectangle in the (x,y)-coordinates, i.e., the robots are
called to map the area constrained in the (x,y)-coordinates as follows:

U =

{
x,y : x ∈ [xmin, xmax],y ∈ [ymin,ymax]

}
where xmin, xmax,ymin,ymax are real numbers that define the “borders”
of the area to be mapped. Using the definition of U, the area can be then
defined as a function that corresponds each point (x,y) ∈ U to a point
z = z(x,y) [height of map at (x,y)]. Let us also consider a fixed set of
NL pairs (x`,y`), ` = 1, . . . ,NL that are distributed in U [typically (xi,yi)
are uniformly distributed in U] and let z(x`,y`) denote map’s value at the
point (x`,y`). Typically, the map construction problem can be transformed
to the one of finding the “best grid” (x`,y`, zL,`), ` = 1, . . . ,NL such that
the quantized map

zq(x,y) =
NL∑
`=1

zL,`φi(x,y, x`,y`)

approximates the actual map z(x,y) as accurately as possible, i.e., the
map construction problem is transformed into the problem of finding the
parameters zL,`, ` = 1, . . . ,NL that minimize the following criterion:∫

(x,y)∈U
‖ z(x,y) −

NL∑
`=1

zL,`φ`(x,y, x`,y`) ‖2 dxdy (4.1)

The functions φ`(·) ∈ [0, 1] in the above equation correspond to the so-
called basis functions. Typical choices for φ`(·) is the piecewise constant
function:

φ`(x,y, x`,y`) =


1 if

√
(x− x`)2 + (y− y`)2

= minj=1,...,L

√
(x− xj)2 + (y− yj)2

0 otherwise

(4.2)
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or, the Gaussian function:

φ`(x,y, x`,y`) = exp(−(x− x`)
2 − (y− y`)

2) (4.3)

Let also

XL =


x1,y1, zL,1(x1,y1)

...

xNL ,yNL , zL,NL(xNL ,yNL)


Hereafter, we will define XL to be the matrix of map landmarks associated
with the map z(x,y).

We close this section by mentioning that in the experiments described
in this chapter, the basis functions were chosen to be the ones given in
(4.3).

4.2.2 Robots Sensors

Before we continue on the map construction problem, let us first provide
with some necessary preliminaries as far as the robot sensors are concerned.
The robots are equipped with sensors that provide proprioceptive measure-
ments (e.g., from GPS labels or inertial sensors) to propagate their state
(position and orientation) estimates as well as exteroceptive measurements
(e.g., cameras, sonars, bathymeters, etc) that enable them to measure their
distance or bearing from points of interest. Let xRi denote the position (in
a 3-D space) of the i-th robot 2 and

XR =


xR1
τ

...

xRNR
τ


denote the matrix of all robots’ positions (team configuration). Furthermore,
let Y denote the vector of all robots’ sensor measurements. In the most
general case, the sensor measurements are related to the matrices XL and
XR through a nonlinear function that admits the form

Y = H(XL, XR,Ξ)
2For simplicity, we assume that the orientation of the robots is fixed and constant all the

time. All the results of this chapter can be easily extended in the case where the orientation
changes by the navigation algorithm.
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where H is the nonlinear vector sensor function and Ξ is the sensor mea-
surement noise vector.

The design for map construction using robots will have to take into
account the – sometimes severe – limitations of the environment the robots
operate on: nonlinear sensor noise characteristics, limited communication
range, and limited visibility of the robots’ sensors, are some of the limi-
tations that render multi-robot map construction a very challenging task.
Below, these limitations are described in more detail:
(NL-Noise) The typical assumption made in most robotic applications
that the sensor noise is additive Gaussian noise is very restrictive and not
realistic in many robot applications as the sensor noise affects the sensor
measurements in a Non-linear fashion. For instance, in the case of sonar
or vision sensors, the noise affecting such sensors is proportional to the
sensor-to-sensing point distance, i.e., the larger is the robot-to-sensing
point distance, the larger is the sensor noise. Similarly, in the case of
localization-related sensors, the larger is the time the robot is operating
without GPS recalibration, the larger is the localization noise. As a result,
it is more realistic to assume a multiplicative sensor noise model that takes
the form:

y = h(xR,q) + hξ(xR,q, tuw)ξ (4.4)

where y is the sensor measurement, xR,q are the positions of the robot
and the sensing point, respectively, h(xR,q) is the sensor model in the
noise-free case, hξ(xR,q, tuw) is the multiplicative sensor noise term, tuw is
the time the robot is without GPS connection and ξ is a standard Gaussian
noise.
(LimComRange) In order to establish the required communication con-
nection for the data transferring between the robots, an additional con-
straint is needed. For ease of comprehension, and without loss of generality,
it can be considered that all robots have the same communication range,
represented as comR. As a result, a robot must make sure – at each
time-instant – that there is at least one other robot that is within comR

distance from it.
(LimVis) In addition to the aforementioned limitations, the robot exte-
roceptive sensors are of limited visibility. As a result, additionally to the
nonlinear sensor noise assumption (4.4), the sensor model for the exte-
roceptive sensors should be augmented to count for the limited visibility
constraint. Moreover, the sensor model must be augmented to count for
the case where there is no line-of-sight between the robot and the sensing
point (e.g., there is an obstacle in between). As a result, the actual sensor
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model becomes:

yxR−q =



undefined if ‖xR − q‖ > thres

undefined if there is no line-of-

sight between xR and q

h(xR,q)+

hξ(x
R,q, tuw)ξ otherwise

(4.5)

where yxR−q denotes the sensor measurement from an robot at position
xR to a sensing point at position q, thres denotes the visibility threshold
beyond which the sensor does not “see” and ‖ · ‖ denotes the Euclidean
norm.

4.2.3 Aperiodic Robot Navigation/Communication under Com-
munication Constraints

Having defined the limitations the robot sensors are facing, we now proceed
by describing the way that the multi-robot team of robots is operating
while performing the map construction task. More precisely, consider that
the robots are initially deployed at the time instant t0 with the robots
initial positions being equal to xR1 (t0), . . . , xRNR(t0) [or, in a more compact
notation, the overall multi-robot of robots initial position is XR(t0)]. Then,
by employing an autonomous navigation/exploration algorithm (to be
described in next sections), the next desired location (waypoint) for each
robot is calculated and each robot is navigated to this next desired location.
Apparently, the time needed for each robot to reach its desired location is
not the same for all robots. As a result, some of the robots will have to wait
(after they have reached their desired location), so as for the rest of robots
to reach their respective next desired location. Please note that while
executing the task of navigating to the next desired location, the different
types of robot sensors operate using different activation frequencies: for
instance, the IMU sensors may be activated many times while the robots
are accomplishing their navigation task, while the exteroceptive sensors,
such as sonars, cameras and bathymeters are typically activated once
and as soon as the robots reach and stabilize at their desired location.
Let ∆t1,nav denote the time required for all of the robots to reach their
next desired location as well as to accomplish the activation of their
exteroceptive sensors. Then, as soon as activation of all exteroceptive
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sensors is accomplished, the robots communicate their sensor measurements
– typically after some pre-processing – to a central station and receive back
their next desired locations. Let ∆t1,com denote the time required for all
robots to communicate their sensor measurements and to receive back their
next desired locations.

Using the above procedure we have that all of the robots have accom-
plished their navigation, sensing and communication tasks at the time-
instant t1 = t0 +∆t1,nav +∆t1,com. At this time instant, the navigation/-
exploration algorithm calculates the new desired locations for the robots
and the above-described procedure is repeated again. In a nutshell, the
robots receive at the time-instances t1, t2, t3, . . . their new desired locations
(waypoints) where t1 = t0 +∆t1,nav+∆t1,com, t2 = t1 +∆t2,nav+∆t2,com,
t3 = t2 + ∆t2,nav + ∆t2,com, . . .. As explained above, the time-intervals
[t0, t1), [t1, t2), [t2, t3), . . . are not of the same length.

Please also note, that the overall exploration/ navigation process must
be accomplished under severe communication constraints: due to these
constraints, not all of the robot sensor measurements can be communicated
to the rest of the team. Moreover, due to these constraints, one or more
robots must not be able to communicate with the others (and, with
the central station) at certain time-instances, which renders the overall
exploration/navigation problem more challenging. For these reasons, the
information to be communicated by each robot must be such that:

(C1) It exploits to the maximum the cooperation capabilities of the system
by making sure that mapping information received by one robot that
is useful to the other robots must be communicated.

(C2) Moreover, it must be able to efficiently operate when communication
of one or more robots is lost at some time-instances or when the
addition of a new member of the team is required “on-the-fly”, i.e.,
when the team is in operation.

In the next sections, we will describe how we address these two issues
that are related to the severe communication constraints of the operation
environment.

4.2.4 Distributed Cooperative Estimation (SLAM) under com-
munication limitations

The proprioceptive and exteroceptive sensor measurements are processed
so as to perform both the map construction as well as the localization
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of the robots. Accurate localization is a prerequisite for accurate map
construction and, as a result, the overall estimation procedure requires
the efficient simultaneous localization and mapping (SLAM). As already
mentioned in the Introduction, there exists quite powerful methodologies
for single-robot SLAM. Our approach is to develop a system that can take
any of these single-robot approaches and appropriately enhance them so as
to develop a cooperative-robot SLAM which will substantially increase the
efficiency of single-robot SLAM by embedding within it with cooperative
information while, of course, making sure that the two objectives (C1), (C2)
related to the communication constraints are satisfied. More precisely, our
approach comprises enhancing single-robot SLAM approaches by providing
them with the “optimal” possible information received by the other robots.
Below, we describe how such an approach is embedded within the proposed
system.

Let us fix the number NL of landmarks and let X̂L(0) denote an initial
estimation of the map landmarks. Let also X̂R(0) denote the estimate of
the initial robot positions. Then, in general, a single-robot SLAM system
can be mathematically represented as follows:

[
X̂(j)
L (ti+1), c

(j)
L (ti+1), x̂

(j)
R (ti+1), c

(j)
R (ti+1)

]
=

= ESTj
(

X̂(j)
L (ti), c

(j)
L (ti), x̂

(j)
R (ti), c

(j)
R (ti),y(j)(ti+1)

) (4.6)

where

• ESTj(·) denotes the overall dynamics of the single-robot SLAM system
for the j-th robot.

• X̂(j)
L (ti+1) denotes the estimated landmarks as generated by the single-

robot SLAM system for the j-th robot.

• c(j)L (ti+1) is an NL-dimensional vector that corresponds to the confi-
dence level of estimation of landmarks, i.e., the `-th entry of the vector
c
(j)
L (ti+1) indicates the degree to how accurately the `-th landmark
has been estimated. For instance, in the case an Extended Kalman
filter (EKF) is employed for performing the landmark estimation, the
confidence level vector typically corresponds to the diagonal elements
of the EKF error covariance matrix.

• x̂(j)R (ti+1) denotes the position estimate of the j-th robot.
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• c(j)R (ti+1) is a positive number indicating the confidence level of esti-
mation of the robot position.

• y(j)(ti+1) is a vector comprising all sensor measurements that are
available to the j-th robot.

Note that in case of single-robot missions, the sensor measurement vector
y(j)(ti+1) comprises of the proprioceptive and exteroceptive sensor mea-
surements of the single-robot. In the case, however, of cooperative robot
missions, this vector can be augmented by using information that is com-
municated by the other robots. In other words, in the case of cooperative
robot missions the sensor measurement vector y(j)(ti+1) can be augmented
as follows:
y(j)(ti+1) = [local sensor info of the j-th robot, sensor info from the

other robots communicated to the j-th robot ]
The problem at hand becomes, then, to design the signals contained in

sensor info from the other robots communicated to the j-th robot so as to
substantially improve the estimator’s (4.6) efficiency by fully exploiting
the cooperation capabilities [objective (C1)] by taking into account the
restrictions and possible malfunctions [objective (C2)] of the communication
system. Before, we proceed on how to design the signals contained in
sensor info from the other robots communicated to the j-th robot, we need
some definitions, provided next.

Definition 4 We say that the `-th landmark XL` = (x`,y`, z`) is visible if
there exists at least one robot so that

• the robot and XL` are connected by a line-of-sight;

• the robot and the point XL` are at a distance smaller than the threshold
value thres defined in equation (4.5) [which corresponds to the
maximum distance the robots’ exteroceptive sensors can “see”].

Given a particular team configuration XR(ti), we let V(XR(ti)) denote the
set of all indices ` for which XL` is visible at time-instant ti. Similarly, we
let V(j)(XR(ti)) to denote the set of all landmarks that are visible by the
j-th robot.

In simple words, the subsets V(j)(XR(ti)) and V(XR(ti)) provide us with
information on the number of landmarks that are currently visible by the
j-th robot and by the overall robot team, respectively.
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Definition 5 We say that the `-th landmark XL` (ti) is accurately-esti-
mated at the time-instant ti, if the `-th entry of the confidence level vector
c
(j)
L (ti+1) of at least one robot is less than a given threshold3. Moreover, we

define as AL(ti) the set of all indices ` for which XL` is accurately-estimated
at time-instant ti. Similarly, we define A(L,j)(ti) as the set of all indices `
for which XL` is accurately-estimated at time-instant ti by the j-th robot,
i.e., A(L,j)(ti) corresponds to the landmarks that have become accurately
estimated due to the j-th robot.

Definition 6 We say that the `-th landmark XL` (ti) is inaccurately-es-
timated but visible at the time-instant ti, if XL` (ti) ∈ V(XR(ti)) and
XL` (ti) 6∈ AL(ti). Moreover, we define as BL(ti) the set of all indices ` for
which XL` is inaccurately-estimated but visible at time-instant ti. Similarly,
we define B(L,j)(ti) as the set of all indices ` for which XL` is currently
visible by the j-th robot but have not yet become accurately estimated.

Definition 7 We say that the robot XRj (ti) is accurately-estimated at
the time-instant ti, if the confidence level c(j)R (ti+1) is less than a given
threshold. Moreover, we define as AR(ti) the set of all indices j for which
XRj is accurately-estimated at time-instant ti.

In simple words, the subsets AL(ti),AR(ti) provide us with information
on the number of landmarks and robots, respectively, whose locations
(positions) are currently accurately estimated, while the subset BL(ti)
provides with information on the number of landmarks that are currently
visible but have not yet been accurately estimated. Please note that, in
the case of the subset AL(ti), if a particular index ` becomes a member
of this set at some time, then it remains in this set for ever (once a
landmark becomes accurately estimated, it remains accurately estimated
forever). This is not true for the set AR(ti) as an robot whose position is
currently accurately estimated may become inaccurately estimated later
on. Moreover, please note that it suffices for at least one robot to estimate
accurately a landmark. It is worth noticing that the aforementioned
concepts are graphically illustrated in Figure 4.3.

We now return back to the problem of designing the signals contained
in sensor info from the other robots communicated to the j-th robot. As

3Additionally, it might be useful to set an upper limit (big enough) in the times that a
landmark can be estimated by at least one robot with any accuracy. This limit will serve as
deadlock avoidance mechanism in cases of a landmark cannot be accurately estimated, due to
the local morphology of the area to be mapped. We would like to thank one of the reviewers
who pointed that out.
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a first point, please notice that at the time-instant ti, the j-th robot
SLAM estimator may produce a number of new accurately estimated
landmarks as well as a number of new visible but not accurately estimated
landmarks. Mathematically speaking, during the aforementioned time-
instant the j-th robot accurately estimates the landmarks that belong to
the set A(L,j)(ti) \ A

(L,j)(ti−1) while the landmarks that belong to the set
B(L,j)(ti) are the ones that become visible but not accurately estimated by
the j-th robot. In the ideal case of infinite communications resources, the
following information should become available from the j-th robot to the
rest of the team:

• The set of landmarks that have become accurately estimated at
time-instant ti by the j-th robot, i.e., the set A(L,j)(ti) \ A

(L,j)(ti−1).
Information of this set is needed by the other robots so as to know
which landmarks have been accurately estimated by the j-th robots so
as for them not to spend time estimating landmarks already accurately
estimated. In other words, this information is needed by the robots so
as not to spend time exploring areas that have been already efficiently
explored by some other robot.

• The current position estimate x̂(j)R (ti) of the j-th robot, the confidence
level c(j)R (ti) as well as the sensor measurements that correspond to
the B(L,j)(ti). Note that if this information were available to the
other than the j-th robot, they could include in their SLAM scheme
sensor measurements acquired by the j-th robot. In other words, if
this information were available each of the robots could use sensor
information received by other robots as if it has been received by its
own. In such a way, the cooperative capabilities of the team could be
exploited to the maximum extend.

As the team of robots has to operate under limited communication
resources, exchanging the information described above is not possible. How-
ever, one can attempt to reduce the amount of the information described
above by (i) tailoring this information so as it meets the communication
requirements and (b) keep the information that can have the most signifi-
cant impact to the SLAM estimators. This is done within the proposed
system as follows:

• As a first step, for each robot, the members of the team that belong
to the reachable exploration area of the particular robot are identified.
The reachable exploration area for each robot is estimated as follows:
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take any two robots, say the j-th and the k-th one. Let P denote
the closest landmark [in the (x,y)-plane] to the k-th robot that is
currently visible by the j-th robot. Then, the k-th robot belongs to
the reachable exploration area of the j-th robot, if the distance in the
(x,y)-plane between P and the position estimate of the k-th robot
is less than a threshold which corresponds to the distance the k-th
robot can travel in the time interval [ti, ti+1]. In other words, if the
k-th robot does not belong to the reachable exploration area of the j-th
robot, then it is not possible for the k-th robot to “see” any of the
landmarks currently “seen” by the j-th robot.

• The landmarks that belong to the sets A(L,j)(ti) \ A
(L,j)(ti−1) and

B(L,j)(ti) are sorted in ascending order according to their distance to
the robots that belong to the reachable area of the j-th robot. Then,
the j-th robot communicates to the rest of the system its position
estimate and the sorted landmark information up to the maximum
communication capacity [in case where there are – estimations of –
landmarks that are very close to each other, e.g., their distance is less
than a pre-specified threshold, then only one of these landmarks is
kept in the sorted list so as to avoid sending landmarks that contain
similar information]. In return, the j-th robot receives its next way
point, the position estimates of the robots that belong to its reachable
exploration area as well as the sorted landmark information from the
other robots up to the maximum communication capacity, where the
sorting of the landmarks is done with respect to their (x,y)-distance
from the j-th robot (and quantized by removing landmarks that carry
similar information). By “landmark information” we mean (i) the
index of the landmark in case this landmark belongs to the set AL
(i.e., in case it is an accurately estimated landmark), its estimated
value (ẑL,`) and a binary signal indicating that it corresponds to
an accurately estimated landmark (b) the index of the landmark
and the respective sensor measurement in case this landmark is
a currently visible but not accurately estimated landmark and a
binary signal indicating that it corresponds to a visible but not
accurately estimated landmark. Moreover, by “up to the maximum
communication capacity” we mean that the packet to be sent or
received is filled with as many landmarks as its maximum capacity
allows.

By using the above logic for designing the signals to be communicated,
useless sensor information is not communicated (i.e., information about
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landmarks that it not possible for the robots to “see” in the next time-
step as these landmarks are quite far from the current positions of the
robots) while sensor information that can and should be used by the
robots is quantized and prioritized by giving priority to landmarks that
are more likely to be “seen” and, moreover, by removing information about
landmarks that carry similar information.

We close this section by mentioning that in the simulation and ex-
perimental results detailed in later sections, the particular single-SLAM
estimator used was a standard non-linear least-squares solver for estimating
the landmarks and a cooperative EKF-based scheme for localization.

4.3 Autonomous Multi-Robot Robot Exploration as
an Optimization Problem

The distributed SLAM procedure as described in the previous section
can be successful only if the trajectories of the robots are designed in
real-time, so as to optimize the estimators’ performance. In other words,
a real-time navigation procedure for the multi-robot system is needed
which will optimize the performance of the overall estimation procedure.
Apart from that, special emphasis must be given so as the navigation
procedure is fault-tolerant, i.e., it is still working in case where one or more
robot has lost connection to the rest of the team. In the next sections,
we describe and analyze the navigation procedure developed within the
proposed system.

4.3.1 Optimal Navigation/Exploration

By using all the preliminaries and definitions described previously, the
optimal robot team navigation/exploration problem can be cast as a
dynamic optimization problem as follows:

max
XR(t1),XR(t2),...,XR(tN),N

N∑
i=1

J(ti)

s.t. C(XR(ti)) 6 0, i = 1, . . . ,N

(4.7)

J(ti) =

∣∣AL(ti)∣∣− ∣∣AL(ti−1)
∣∣

(ti − ti−1)
(4.8)

where N denotes the time-instant where all landmarks have been accurately
estimated, |A| denotes the cardinality of the set A and C(·) is a non-
linear function of the robot positions. The incorporation of the non-linear
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function C(·) is used in order to constrain the robot waypoints XR(ti)) to
the rectangle U as well as to incorporate obstacle avoidance and maximum
speed constraints. Standard algebraic manipulations can be employed
to cast all these constraints in the form C(XR(ti)) 6 0. Note that the
instantaneous cost J(ti) corresponds to the rate of number of landmarks
that are accurately estimated per time unit. It is not difficult for someone
to see that maximizing the criterion

∑N
i=1 J(ti) is equivalent of minimizing

the time to accomplish the map construction procedure. It is worth noticing
that the above formulation is not unique and other, different formulations
can be applied as well. All the results of the proposed approach can be
easily extended to the case where different formulations are used than the
one above [by simply replacing the term J(ti) in equation (4.7) by the
respective term of the different formulation]. Also, note that the accurate
estimation of the robot positions (localization) is not directly used in the
above formulation. However, accurate estimation of the robot positions is
a prerequisite for accurate map construction and, as a result, the optimal
solution of (4.7) requires that optimal waypoints XR(t1), XR(t2), . . . , XR(tN)
are chosen so that robots are optimally localized whenever it is necessary.

4.3.2 Optimal One-Step-Ahead Navigation/Exploration

There are many different reasons that render the solution of the dynamic
optimization problem (4.7)-(4.8) practically infeasible. First of all, the
complexity of the overall system dynamics renders practically very difficult
to obtain closed-form (analytic) expressions for most of the terms in
(4.7)-(4.8) which is a prerequisite, for applying most of the available tools
from optimization theory. Most importantly and even if it were possible
to obtain closed-form expressions, still the problem (4.7)-(4.8) would be
impossible to be practically solved as it is a NP-complete problem. To
overcome these two problems, we adopt a two step approach:

Step 1 In the first step, we assume that it is possible to obtain closed-form
expressions for the terms in (4.7)-(4.8) and then attempt to modify
the overall problem so as to come up with an approach that overcomes
the NP-complete issue, on the one hand, but provides an efficient
solution to the navigation/exploration problem, on the other. To do
so, we adopt an approach where the problem is to construct – based
on the dynamic optimization problem (4.7)-(4.8) – an appropriate
objective function J(ti) – different than J(ti) in equation (4.7) –
so that optimizing one-step-ahead the function J(ti) leads to an
efficient solution to the navigation/exploration problem. In other
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words, we attempt to construct a function J(ti) such that, choosing
the waypoints XR(ti+1) that optimize J(ti+1), provides an efficient
solution to navigation/exploration problem. Both theoretical analysis
and simulation experiments are used towards such a purpose. In the
simulation experiments, to overcome the problem that closed-form
expressions are not available, we employ the Optimal-one-Step-Ahead
Random Semi-Exhaustive Search – (OSARSES), an approach which
approximates the optimal-one-step-ahead exhaustive search algorithm.
Please note that OSARSES is a very “heavy” computational algorithm
which cannot be implemented in real-life applications and is used
only for analysis purposes.

Step 2 In order to overcome the problem that closed-form solutions of
the terms involved in the optimization problem, we employ the Cog-
nitive Adaptive Optimization (CAO) algorithm initially introduced
in [89–91]. CAO has successfully been implemented to a similar –
but significantly less complex – problem, this of navigating a team
of autonomous robots when they are deployed to perform optimal
surveillance coverage [2, 100, 101]. As in the case of navigation/ex-
ploration for map construction, the problem of optimal surveillance
coverage involves optimization of terms for which closed-form expres-
sions are not available. However, the problem of optimal surveillance
coverage is a static optimization problem and, thus, less complex than
the dynamic optimization problem of exploration treated here.

4.3.3 Transforming the Optimization Problem

An iterative approach was used in order to accomplish the first step
described above:

Candidates for the objective function J were evaluated by employing
multi-robot exploration using OSARSES for two different simulation envi-
ronments. These two different simulation environments used two different
quite complex maps (referred hereafter Map #1 and Map #2). The first
map (Map #1) depicts an area located in Zurich, Switzerland. This map
was generated using a state-of-the-art visual-SLAM algorithm [100] which
tracks the pose of the camera while, simultaneously and autonomously,
building an incremental map of the surrounding environment. The second
map (Map #2) is an artificially generated one, constructed using S-plines
interpolation in such a way to represent sharp morphological variations in
order to be used as worst-case mapping scenario. Both maps are illustrated
in Figure 4.1
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(a) Map #1

(b) Map #2

Figure 4.1. The Simulation Environment

For each of the candidate forms of J and for both of the simulation
environments, the robots were navigated so as to optimize J by employing
OSARSES: at each time-instant ti, different sets of feasible candidate
next waypoints XR,cand(ti+1) for the robots were randomly generated and
the overall system was simulated until the time-instant ti+1; several such
candidate sets were generated/simulated and the best [i.e., the one that
provides the best J(ti+1)] is chosen to be the next waypoints for the robots.
The overall procedure of applying OSARSES is exhibited in Algorithm 1.

Using the above described procedure, an iterative design procedure
was adopted for the design of J: at each step of this iterative procedure,
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Algorithm 1 One time-stamp of OSARSES Algorithm
Randomly Generate XR,cand(ti+1)

Exclude the ones that violates the environmental and communication constraints
XR,cand
valid (ti+1) ⊆ XR,cand(ti+1)

c← 0
while c 6 |cand| do

Deploy the action XR,cand(c)
valid (ti+1)

JJc ← J(ti+1) //Calculate the objective function value for this valid movement
c← c+ 1

end while
imax← arg max(JJ)
XR,final(ti+1)← XR,cand(imax)

valid (ti+1)

the function J was modified, based on both observations on the system
simulated performance and theoretical analysis.

In order to evaluate the performance under different choices for J we
performed two different types of comparison. First, we compared the
performance among these different choices as explained in the previous
subsection. Secondly, we used an approximate solution to the dynamic
optimization problem (4.7)-(4.8) and compared its performance with that
of the proposed approach. More precisely, by employing the so-called
Parametrized Cognitive Adaptive Optmization - (PCAO) - approach [102]
was employed in order to approximately solve the dynamic optimization
problem (4.7)-(4.8). By doing so, we concluded that the globally optimal –
but practically not feasible – navigation/exploration algorithm for Map
#1 can accomplish the overall map construction mission in less than 400
time-units, while the globally optimal navigation/exploration algorithm
for Map #2 can accomplish the overall map construction mission in less
than 450 time-units. It is worth noticing that the PCAO approach can
provide a non-practically feasible solution as the number of computations
required for implementing such a solution is huge. Moreover, as the exact
solution to the dynamic optimization problem (4.7)-(4.8) is not possible to
be obtained, these performance numbers correspond to upper bounds for
the performance of the globally optimal solution.

However, as PCAO did not exhibit and any further significant improve-
ment on these numbers as its approximation accuracy is increased, these
upper bounds seem to be quite close to the performance bounds of the
globally optimal performance. Having this in mind, all of the simulation ex-
periments for both Map #1 and Map #2 were executed for 500 time-units
and the performance index we adopted for evaluating the different choices
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for J as well as the proposed CAO-based approach was the map error at
t = 500 (where by “map error” we define the percentage of landmarks that
have not been accurately estimated). A solution that provides a small map
error at t = 500, although it is not the globally optimal, is very close to it.

Below, we describe the iterative procedure used for devising the objective
function J. Initially, the function J(ti) was selected to be the instantaneous
cost J(ti+1) for the dynamic optimization problem (4.7)-(4.8). This is a
typical choice in many different practical applications and it is the most
straightforward choice for J. However, the use of such a choice exhibits a
very poor performance as shown in Table 4.1. More precisely and as shown
in Table 4.1, this particular choice for J leads to a very poor performance
(less than 15%4 of the total number of landmarks are accurately estimated,
for all different cases).

Landmarks 1100 All

Candidates 5 50 500 5 70

Map #1 91.9% 88.9 % 85.3% 84.9% 85%

Map #2 87.5% 89.6 % 89.8% 87.8% 86.3%

Table 4.1. Average percentage of Non-Accurately Estimated Landmarks at t = 500 for
J(ti) = J(ti+1)

The poor performance of the choice J(ti) = J(ti+1) is due to the fact
that such a choice leads the overall algorithm to get stuck in deadlocks
(or, mathematically speaking, the algorithm gets stuck in local maxima).
To avoid such an unexpected situation, we modify the J(ti) = J(ti+1) by
adding more terms, the maximization of which lead to a better performance.
By employing the above-described iterative approach, the results of which
are presented in the following subsections, the final form of the function
J(ti) is shown below:

J(ti) = J(ti+1) + J1(ti+1) + J2(ti+1) + J3(ti+1) (4.9)

This enhanced version of the objective function retains only the terms that
actually attribute to the general objective of the problem (see section 4.3.3
and figure 4.2). Below, we describe each of the terms in (4.9), as well as
the reasoning behind choosing these terms.

4Table 4.1 presents the performance using the average percentage of the Non-Accurately
estimated landmarks, so as to be in-line with the upcoming results.
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Move towards the closest unexplored areas

The choice for the term J1 is based on the observation that when there are
no further landmarks that can be accurately estimated by some robots,
the objective function can be augmented so as to “motivate” these robots
to increase the number of visible but non-accurately estimated landmarks.
The idea behind such an augmentation is simple: whenever some robots
cannot estimate further landmarks, then they are “moved” to the closest
unexplored areas. The particular form for J1 that realizes such a reasoning
is as follows:

J1(ti) =

NR∑
j=1

s1,j(ti)

∣∣BL,j(ti)
∣∣

ti − ti−1
(4.10)

where BL,j(ti) denotes the set of indices of visible, but non-accurately
estimated landmarks by the j-th robot – see Definition 6 – and the term
s1,j denotes a switching function that is zero when there are no deadlocks
and becomes equal to a user-defined parameter K1, otherwise:

s1,j(ti) =

 0 if
∣∣AL,j(ti−1)

∣∣− ∣∣AL,j(ti−2)
∣∣ 6 ε1

K1 otherwise
(4.11)

where ε1 is a small positive design constant. As it can be seen in Figure
4.2, the augmentation of the objective function with the term J1 leads to
dramatic improvements to the navigation/exploration task.

Avoid poor estimation

Additionally, to the augmentation using the term J1, a further augmentation
is used that takes into account the distances between every visible, non-
accurately estimated landmark and its closest robot. More precisely, the
objective function is augmented with the term J2, which is used to force
the robots to come closer to landmarks that are currently visible but not
yet estimated, in order to complete their estimation process. Such a term
takes into account the non-linear effect of the sensor noise [cf. equation
(4.4)]: as the effect of sensor noise depends on the distance between the
robot and the landmark, the estimation of the landmark becomes “better”
when the robot moves closer to the landmark. Such an observation is
realized by including the term J2 defined as follows:

J2(ti) = −
NR∑
j=1
s2,j(ti)

∑
j∈BL(ti)

mini=1,...,NRy
2
xR
i
−XL
j

ti−ti−1
(4.12)
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where s2,j is a switching function defined similarly to s1,j:

s2,j(ti) =

 0 if
∣∣AL,j(ti−1)

∣∣− ∣∣AL,j(ti−2)
∣∣ 6 ε1

K2 otherwise
(4.13)

where K2 is a positive design constant. In other words, the term J1 is
responsible for moving the robots closer to the landmarks that “have not
seen before” (or “have been poorly seen”), while the term J2 is responsible
for moving the robots closer to landmarks so that they reduce the sensor
noise effect and they can “see them better”. Due to the tradeoff between
the two terms, the constant K1 and K2 are used that serve as weights for
giving less or more priority to one of the terms J1, J2.

The “curse” of full knowledge of a local region

After performing several experiments by using the cost criterion J(ti) =
J(ti+1) +
J1(ti+1)+ J2(ti+1), it was observed that the use of such a criterion possessed
the disadvantage that, in quite a few of instances, the robots get trapped
in a sub-region that has been fully explored and there are no further
non-accurately estimated landmarks that are or can become visible. As
a result, any possible movement of the robots within the sub-region does
not cause any change in the cost function. Consequently, the robots are
“trapped” in a dead-lock. To avoid this undesirable situation, the term J3
is introduced. Ideally, this term would attempt to minimize the distance
between every robot and its closest landmark that is currently invisible
and not accurately-estimated, so as to force the robots to move closer
to landmarks that are non-visible and not-accurately estimated. As the
calculation of this distance cannot be practically performed (as the exact
position of this landmark is not known), firstly, the currently-invisible,
non-accurately estimated landmarks that have been visible at some time in
the past are examined. If no such a landmark exists (i.e., all the landmarks
that were visible at some point, were accurately estimated), then the
distances between the robots and the estimates of landmark positions is
taking into account. Evidently, the term J3 aims to move the robots in the
“borders” between known and unknown areas and is defined as follows:

J3(ti) = −

NR∑
j=1

s3,j(ti)

∑
j∈B̂L(ti) mini=1,...,NR y

2
xRi −XLj

ti − ti−1
(4.14)
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The set B̂L(ti) denotes the set of indices of landmarks that were visible in
the past but have not been accurately estimated and, if no such landmarks
exist, the set B̂L(ti) denotes the set of all landmark estimates that are or
have not been visible and accurately estimated. The switching function
s3,j becomes equal to 1 only when none of the terms J, J1, J2 can lead to a
further improvement due to the j-th robot, i.e.,

s3(ti) =

 0 if(Condition <>)

K3 otherwise
(4.15)

Condition <>=
∣∣AL,j(ti−1)

∣∣− ∣∣AL,j(ti−2)
∣∣ 6 ε1

and

|J1,i(ti−1) − J1,j(ti−2)| 6 ε2

and

|J2,j(ti−1) − J2,j(ti−2)| 6 ε3

Performance of the final form of the objective function

Figure 4.2 highlights the impact of each term of the objective function.
It’s worth noting that the simulation setup was kept the same for all
the experiments, as explained in section 4.3.3. A conclusion that arises
through the study of the results is the observation that the second term (see
“Move towards the closest unexplored areas”) strongly improves the overall
performance. The rest of the terms are employed to guarantee the overall
system’s robustness, making it less vulnerable to the system’s uncertain
parameters such as the terrain’s morphology and/or the initial arrangement
of the landmark estimates. It is remarkable that in certain experiments,
e.g. the one with 1100 landmarks on Map #1 with 500 candidate vectors
for OSARSES, the exploration process managed to accurately estimate
the 98.2% of the required landmarks, obtaining an improvement of 700%
as compared to the choice J = J. Summarizing, the non-practically feasible
method OSARSES under the choice (4.9) for the objective function can
provide with quite efficient solutions under the condition that the number
of candidate vectors for OSARSES is sufficiently large.
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(a)

(b)

(c)

(d)

Figure 4.2. Comparison of the average percentage of non-accurately estimated land-
marks on 2 different maps and 2 different sets of landmarks
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Theoretical Analysis of J

Apart from the numerical results that exhibit the efficient performance
under the choice (4.9), it can be seen that such a choice leads to deadlock-
free solutions and, moreover, the solutions obtained by one-step-ahead
maximization this function, are efficient. Such a claim is formally stated
in the next Theorem.
Theorem 1 The objective function J as defined in (4.9) attains one and
only maximum (i.e., it is free of local maxima). More precisely, its global
maximum is attained when all the landmarks have been accurately esti-
mated (i.e., when the overall map construction mission is successfully
accomplished). Moreover, one-step-ahead maximization of this function
guarantees efficient performance of the overall navigation/exploration mis-
sion. More precisely, let us consider the three different sub-teams of the
overall robot team:

• the sub-team (A) which includes all robots of the team for which there
are landmarks within their vicinity that can be accurately estimated;

• the sub-team (V) which includes all robots of the team for which there
are landmarks within their vicinity that cannot become accurately
estimated but they can become visible;

• the sub-team (I) which includes all robots of the team for which there
are neither landmarks within their vicinity that can become accurately
estimated nor landmarks that can become visible.

Then, one-step-ahead maximization of J implies that (a) the sub-team (A)
will be cooperatively navigated so as to maximize the number of landmarks
to become estimated; (b) the sub-team (V) will be cooperatively navigated
so as to maximize the estimation accuracy of the landmarks to become
accurately estimated; (c) the sub-team (I) will be cooperatively navigated to
the closest to each robot non-explored areas.

The proof of the above Theorem is straightforward as the functions
J, J1, J2, J3 were designed so as to satisfy the performance mentioned in the
Theorem.

4.4 Cognitive Adaptive Optimization for Multi-Robot
Exploration

Apart from the theoretical contribution about the construction of an
objective function, the approximation of which will be sufficient enough
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to navigate a team of robots in order to accurately map an unknown
environment, our advantage against the majority of one-step-ahead optimal
algorithms is that we utilize a more realistic approach where the actual
evaluation of the objective function is not available at each timestep,
only an approximation of it based on historical values. In essence, the
actual objective/reward function at each timestep is highly depended on
the morphology of the unknown (to be mapped) area and its evaluation
without the actual movement should not considered trivial.

4.4.1 Preliminaries - Problem Conceptualization

Having defined the active exploration criterion, we will now proceed on
presenting the proposed algorithm for autonomously navigating the robots
towards maximizing such a criterion. The algorithm to be used is based
on the so called Cognitive-based Adaptive Optimization (CAO) approach
originated in the references [89–91]. CAO has been used in the past in a
variety of robotics related applications, including implementations in aerial
and ground robots, as described in detail in [2, 100,103]. The version of
the CAO algorithm used within the proposed approach, takes the same
form and extends the one presented and formally analyzed in [2].

Below, we provide the main details of the CAO algorithm as employed
in the framework of the active exploration problem. Please note that
the only difference between the CAO approach used for the multi-robot
optimal surveillance coverage problem [2,100] and the one used here lies
in the use of a different optimization criterion which, in turn, leads to
different performance metrics (as detailed in Theorem 2 below).

We start by noticing that the active exploration criterion (equation 4.9)
is a function of the robots’ positions, i.e.,

ti = J
(

XRti
)

(4.16)

where t1, t2, t3, . . . denotes the time-index, ti denotes the value of the
active exploration criterion at the ti-th time-step, XRti denote the position
vectors of the robots (see 4.2.2), and J is a non-linear function which
depends – apart from the robots positions – on the particular environment
where the robots operate (e.g., position of landmarks).

Due to the dependence of the function J on the particular environment
characteristics, the explicit form of the function J is not known in practical
situations; as a result, standard optimization algorithms (e.g., steepest
descent) are not applicable to the problem in hand. However, in most
practical cases, like the one treated in this chapter, the current value of
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the active exploration criterion can be estimated from the robots’ sensor
measurements. In other words, at each time-step ti, an estimate of ti is
available through robots sensor measurements,

nti = J
(

XRti
)
+ ξti (4.17)

where nti denotes the estimate of ti and ξti denotes the noise introduced
in the estimation of Jti due to the presence of noise in the robots’ sensors.
Please note that, although it is natural to assume that the noise sequence
ξti is a stochastic zero-mean signal, it is not realistic to assume that it
satisfies the typical Additive White Noise Gaussian (AWNG) property
even if the robots sensor noise is AWNG: as J is a non-linear function of
the robots positions (and thus of the robots sensor measurements), the
AWNG property is typically lost.

Apart from the problem of dealing with a criterion for which an explicit
form is not known but only its noisy measurements are available at each
time, efficient robot navigation algorithms have additionally to deal with
the problem of restricting the robots’ positions so that obstacle avoidance
and communication constraints are met. In other words, at each time-
instant ti, the vector XRti should satisfy a set of constraints which, in
general, can be represented as follows:

C
(

XRti
)
6 0 (4.18)

where C is a set of non-linear functions of the robots positions. As in the case
of J, the function C depends on the particular environment characteristics
(e.g., location of obstacles, terrain morphology) and an explicit form of
this function may be not known in many practical situations; however, it
is natural to assume that the active exploration algorithm is provided with
information whether a particular selection of robots’ positions satisfies or
violates the set of constraints (4.18).

Given the mathematical description presented above, the active explo-
ration problem can be mathematically described as the problem of moving
XRti to a set of positions that solves the following constrained optimization
problem:

maximize ti

subject to C
(

XRti
)
6 0 .

(4.19)

As already noticed, the difficulty in solving, in real-time and in real-life
situations, the constrained optimization problem (4.19) lies in the fact that
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explicit forms for the functions J and C are not available. To circumvent
this difficulty, the CAO approach of [90], appropriately modified the original
CAO algorithm so as to be applicable to the problem in hand.

4.4.2 Main steps of CAO approach

Algorithm 2 One time-stamp of Cognitive Adaptive Optimization Algorithm
n
t(i)

− XR
t(i)

//update look-up/history tables with the previously evaluated pair

ϑti+1 = argmin
ϑ

1
2
∑ti
`=`ti

(
n` − ϑτφ

(
XR`
))2 //Recalibrate the estimator’s characteris-

tics
Randomly Generate XR,cand(ti+1)

Exclude the ones that violates the environmental and communication constraints
XR,cand
valid (ti) ⊆ XR,cand(ti+1)

c← 0
while c 6 |cand| do

Ĵc ← ϑτti+1
φ
(

XR,cand(c)
valid (ti+1)

)
//Approximate the objective function value for

every valid movement
c← c+ 1

end while
imax← arg max(Ĵ)
XR,final(ti+1)← XR,cand(imax)

valid (ti+1)

As a first step, the CAO approach, which its pseudo-code is illustrated
in Algorithm 2, makes use of function approximators for the estimation of
the unknown objective function J at each time-instant k according to

̂ti

(
XRti
)
= ϑτtiφ

(
XRti
)

. (4.20)

Here ̂ti
(

XRti
)
denotes the approximation/ estimation of J generated at

the ti-th time-step, φ denotes the non-linear vector of L regressor terms,
ϑti denotes the vector of parameter estimates calculated at the ti-th time-
instant and L is a positive user-defined integer denoting the size of the
function approximator (4.20). The vector φ of regressor terms must
be chosen so that it is a universal approximator, such as polynomial
approximators, radial basis functions, kernel-based approximators, etc.

The parameter estimation vector ϑti is calculated according to

ϑti = argmin
ϑ

1
2

ti−1∑
`=`ti

(
n` − ϑ

τφ
(

XR`
))2

(4.21)
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where `ti = max{0, ti−L−Th} with Th being a user-defined nonnegative
integer. Standard least-squares optimization algorithms can be used for
the solution of (4.21).

As soon as the estimator (n` is constructed according to (4.20), (4.21),
the set of new robots positions is selected as follows: firstly, a set of N
candidate robots’ positions is constructed according to5

x
i,j
ti

= x
(i)
ti

+αtiζ
i,j
ti

, i ∈ {1, . . . ,NR}, j ∈ {1, . . . ,N} , (4.22)

where xi,jti denotes the i-th element of XRti , ζ
i,j
ti

is a zero-mean, unity-variance
random vector with dimension equal to the dimension of XRti and αti is a
positive real sequence which satisfies the conditions:

lim
i→∞αti = 0,

∞∑
i=1

αti =∞,
∞∑
i=1

α2
ti
<∞ . (4.23)

Among all N candidate new positions x1,j
ti

, . . . , xNR,j
ti

, the ones that corre-
spond to non-feasible positions – i.e., the ones that violate the constraints
(4.18) – are neglected and then the new robots positions are calculated as
follows: [

XRti+1

]
= argmax

j ∈ {1, . . . ,N}

XR,j
ti
not neglected

Ĵti

(
XR,j
ti+1

)

The idea behind the above logic is simple: at each time-instant a set of
many candidate new robots’ positions is generated. The candidate, among
all feasible ones, that provides the best estimated value ̂ti of the objective
function is selected as the new set of robots positions. The random choice
for the candidates is essential and crucial for the efficiency of the algorithm,
as such a choice guarantees that Ĵti is a reliable and accurate estimate for
the unknown function J; see [90,91] for more details. On the other hand,
the choice of a slowly decaying sequence αti , a typical choice of adaptive
gains in stochastic optimization algorithms is essential for filtering out
the effects of the noise term ξti [cf. (4.17)]. The next summarizes the
properties of the CAO algorithm described above; the proof is among the
same lines as this of Theorem 1 of [2].

5According to [90,91] it suffices to choose N to be any positive integer larger or equal to
2×[the number of variables being optimized by CAO]. In our case the variables optimized are
the robot positions XRti and thus it suffices for N to satisfy N > 2NR × dim

(
XRti
)
.
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Theorem 2 Let XR,opt
ti+1 denote the “one-step-ahead-optimal” robot way-

points, i.e., the feasible waypoints that maximize J(ti). Then, the above-
described CAO algorithm satisfies:

XRti+1 = XR,opt
ti+1 + ε(ti) + ν

where ε(ti) vanishes to zero exponentially fast and the term ν is a constant
term that depends on the approximator φ (and can become as small as
desired at the expense of making the convergence of ε(ti) slower).

In simple words, the above Theorem states that the CAO-based ap-
proaches become (after some time due to learning) approximately equal to
the optimal-step-ahead ones.

4.5 Simulation Results

In this section, we describe the simulation set-up used for the analysis
presented in section 4.3.3 as well as the evaluation of the proposed CAO-
based approach as compared to the practically infeasible OSARSES-based
approach. The simulation environment for the experiments is described
below:

• Simulations conducted using the two different maps described in
detail in 4.2.4 and presented in 4.1. For simplification the operation
area is restricted in the cube [−1, 1]3, so any value, that is afterwards
mentioned, including the maps, has been casted to this cube.

• The number of robots is equal to NR = 3 for the first set of experi-
ments (Figure 4.5) and NR = 10 for the second (Figure 4.6).

• For the communication capacity, we assumed that each robot can
send and receive up to 10 landmark measurements according to the
procedure described in section 4.2.4.

• For the number of landmarks two different scenarios were evaluated.
First, we assume that each map consists only ofNL = 1100 landmarks.
In the second scenario, we assume that every point (pixel) of the
height-map is a landmark. In this case, Map #1 includes NL = 7542
landmarks while Map #2 includes NL = 10500 landmarks.

• The main constraints imposed to the robots are that they remain
within the terrain’s limits, i.e., within [Xmin,Xmax] and [Ymin, Ymax]
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in the x- and y-axes, respectively. At the same time, robots remain
within [z+ d, zMax] along the z-axis, in order to avoid hitting the
terrain. The value of d was equal to 0.05.

• The communication range is set to comRange = 0.3.

• All robots were assumed to have range sensors, measuring the robot
distance from the landmark, using the following equation:

yxR−q =



undefined if ‖xR − q‖ > thres

undefined if there is no line-of-

sight between xR and q

‖xR − q‖ (1 + ξ) otherwise

(4.24)

• Standard weighted least-squares [104] was employed for estimated
the landmarks, while perfect localization accuracy was assumed.

• As an overall evaluation criterion for the exploration procedure (Fig-
ures 4.5(a), 4.5(c), 4.6(a) and 4.6(c)), the number of the Remaining
Landmarks, ie the total number of landmarks that are not accurately-
estimated after the completion of the experiment, will be used. Addi-
tionally to that term, and in order to obtain a better picture about
the system’s performance, we employed an extra evaluation criterion.
The objective of this term is to distinguish between experiments
where their final total number of the Remaining Landmarks was the
same but their estimation progress was not. This criterion rewards
performances that have greater landmarks’ estimation ratio over the
simulation time, ensuring to reward performances that achieved a
satisfactory function from their early steps of the execution. This
parameter (Figures 4.5(b), 4.5(d), 4.6(b) and 4.6(d)) corresponds to
the summation of the error in the estimation of total landmarks from
the first time-step to the last one, according to the equation 4.25

Sum_of_Error =
Tmax∑
i=1

||X̂L(ti) − XL(ti)|| (4.25)

A set of experiments has been conducted in order to evaluate the perfor-
mance of the proposed approach. One instance of the above experiments,
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(a) T = 50

(b) T = 200 (c) T = 350

(d) T = 500

Figure 4.3. Multi-robot Navigation/Exploration Process: the green area corresponds
to currently visible landmarks, the brown area (with morphological characteristics)
corresponds to landmarks that have been accurately estimated and the red area corresponds
to landmarks that have never been seen before. The three big spheres indicate the
communication range of each robot (located at the center of the spheres)
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(a) The Trajectories Recorded During the Navigation on Map #1

(b) The Trajectories Recorded During the Navigation on Map #2

Figure 4.4. The Recorded Trajectories

using 3 robots, has been illustrated in details, in Figure 4.3, where the
green area corresponds to currently visible landmarks, the brown area
(with morphological characteristics) corresponds to landmarks that have
been accurately estimated and the red area corresponds to landmarks
that have never been seen before. The three big spheres indicate the
communication range of each robot (located at the center of the spheres).
Figure 4.4 depicts the trajectories of the 3 robots in both maps, with their
starting and ending positions, as they were calculated by the proposed
CAO approach6.

6A video footage of this experiment can be found on https://tinyurl.com/

https://tinyurl.com/CAOnavigation
https://tinyurl.com/CAOnavigation
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Overall the results are presented in Figure 4.5 for 3 robots and Figure
4.6 for 10 robots. The results from OSARSES are marked with the blue
bars while the corresponding results of the CAO-based proposed approach
with green ones. In each figure, the x-axis represents the number of real
configurations that are evaluated at each timestep from the robots, before
the final movement selection. It is worth highlighting that, the proposed
approach is only located on the bar that corresponds to 0 real evaluations,
as it does not need any actual movement in order to be able to make its
decisions (see section 4.4).

(a) %Remaining Landmarks (b) Summation of Error

(c) %Remaining Landmarks (d) Summation of Error

Figure 4.5. Conducted Experiments for 3 AUVs, for both the algorithms with 1100
landmarks and every point as landmark

CAOnavigation.

https://tinyurl.com/CAOnavigation
https://tinyurl.com/CAOnavigation
https://tinyurl.com/CAOnavigation
https://tinyurl.com/CAOnavigation
https://tinyurl.com/CAOnavigation
https://tinyurl.com/CAOnavigation
https://tinyurl.com/CAOnavigation
https://tinyurl.com/CAOnavigation
https://tinyurl.com/CAOnavigation
https://tinyurl.com/CAOnavigation
https://tinyurl.com/CAOnavigation
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(a) %Remaining Landmarks (b) Summation of Error

(c) %Remaining Landmarks (d) Summation of Error

Figure 4.6. Conducted Experiments for 10 AUVs, for both the algorithms with 1100
landmarks and every point as landmark

The results indicate clearly that the CAO approach, can obtain better
performance even from the OSARSES algorithm which uses five real
positions before being able to produce its control decision. Regarding
to the 3 robots experiment (figure 4.5), an improvement of about 79.7%
and 24.1% in MAP #1 as well as 147.3% and 9% in MAP #2 map is
achieved, compared to the OSARSES with 0 and with 5 candidate set
of waypoints ( XR,cand ) respectively. The study of the summation of
error, has further strengthened the conclusions that the proposed approach
outperforms the performance of the OSARSES in cases of zero and 5
candidate set of waypoints. Inevitably, in case where the OSARSES uses
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a large number of candidate set of real waypoints, it performs better than
CAO. As it is seen in figure 4.6, in case of 10 robots with 1100 landmarks,
the proposed algorithm can scale up well, retaining its improvements’ levels.
Concretely, it achieves an improvement of about 80.2% and 71.4% in each
map respectively (Figure 4.6(a)), with a corresponding improvement in
the summation of error (Figure 4.6(b)). Interestingly, in the scenario
where every point of the map is considered as landmark and as a result a
fine-grained mapping is required, the proposed algorithm is able not only
to outperform the 0 and 5 real evaluation cases of OSARSES (acquiring
the impressive improvement of 88.4% and 63.8% in Map #1 as well as
72.3% and 40% in MAP #2 respectively), but also to approximate the
performance of OSARSES with 70 real evaluation per timestep.

The aforementioned result is not out of the blue. As the number of
robots and the landmarks is increasing, the 70 real evaluation became a
rather insufficient number for the OSARSES algorithm. Unfortunately, the
further increasing is prohibited even in the simulation test-bed and it will
take forever to statistically remove the randomness of the results. On the
contrary, in the case of CAO approach we are able to efficiently/securely
increase the number of candidates, due to the fact that

• these candidates are not actually evaluated, so the operational cost
is zero

• even the computational cost to test the candidates on the CAO’s
estimator (equation 4.20) is extremely inferior compared to the one
of OSARSES which has to calculate all the terms of equation 4.9 for
every single candidate configuration.

4.6 Experimental Results

The proposed methodology has been also evaluated through real-life
tests concerning sea-floor mapping of unknown areas using two AUVs
(Autonomous Underwater Vehicles). The tests were conducted in the
Leixes Por, located in the city of Oporto, Portugal7. Next we describe the
details of the experiments.

7A video demonstrating the real-life experiments can be found here: https://tinyurl.
com/NoptilusMapping

https://tinyurl.com/NoptilusMapping
https://tinyurl.com/NoptilusMapping
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4.6.1 System Details

A schematic diagram of the system developed for implementing the pro-
posed approach is illustrated in Figure 4.7.

Figure 4.7. Flowchart of system used in the experiments

The entire procedure can be separated into 2 parts: a web-service one
and the client-side part. The web-based interface undertakes the role of
coordinating the AUVs. This service requires from the operators, minimum
amount of information such as the number of the vehicles, so as to begin the
procedure. The web-application was designed to provide the operators with
a general-purpose tool through which the progress of mission is streamlined
in real-time. It is worth noticing that the web-service is compatible with
the existing systems and can be adopted so as to navigate any type of AUV.
The web-service produces in every time step the next optimal position
(waypoint) for each AUV, based on the proposed approach, the landmarks
estimates, and the current position of the AUVs. Next, the new waypoints
are transferred to the client-side part of the application.

The client-side part consists of 2 software: NEPTUS8 and DUNE9.
NEPTUS is a command and control software that can be used to plan,

8Neptus Command and Control Software: http://www.lsts.pt/toolchain/neptus/
9DUNE: Unified Navigation Environment: http://www.lsts.pt/toolchain/dune

http://www.lsts.pt/toolchain/neptus/
http://www.lsts.pt/toolchain/dune
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simulate, monitor and review missions executed by AUVs. DUNE is the
runtime environment for vehicle on-board software. It is used to write
generic embedded software at the heart of the vehicle, e.g. code for control,
navigation, communication, sensor and actuator access, etc. Through these
tools, AUVs receive the information about the next waypoint.

When the AUVs reach their respective desired location and stabilize,
they activate their exteroceptive sensors. In the sequel, the AUVs com-
municate their sensor measurements together with their exact positions
through NEPTUS and DUNE to the web-service.

Subsequently, the web-service incorporates the actual positions of the
AUVs into the proposed model as well as updates the landmarks estimates,
based on the sensor information received. A non-linear least squares
algorithm is used perform such an estimation (SLAM) procedure. At the
same time the web-service, based on the sensor measurements and by
employing a Gaussian based interpolation algorithm, builds the detailed
map. It has to be emphasized here that the overall procedure fully relies
on each AUV “local” localization system (i.e., the localization system of
each AUV does not incorporate measurements from the other AUVs) and,
thus, the SLAM system only performs landmark estimation.

4.6.2 Ground Truth - Usual Practice

Through earlier measurements, observations and calculations, a detailed
map of each region we want to capture is available. Hereafter, we will
refer to this version of the map as ground truth. To obtain a ground truth
map, several AUVs have to operate –in a non-cooperative fashion– for
many hours using multi-beam sensors, following a predefined iterative
procedure, collecting an enormous amount of measurements. Apparently,
this is a very time consuming and expensive task. The ground truth map,
mainly due to the fact that it is considered the best available perception
about the morphology of the seabed, constitutes the reference map, the
one that is going to be used in order to evaluate, in terms of accuracy, the
exploration’s results of alternative, feasible methodologies

Simultaneously, several usual practice versions of each map are also
available. These maps were captured using the today’s usual practice
for the exploration of unknown underwater environments. According to
this approach, the AUVs are following a predefined trajectory collecting
data from the seabed using a specific sampling rate, until a predefine time.
This methodology despite its simplicity, holds many advantages, that have
established its usage in the most real-life exploration/coverage missions:
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• predictability (a priori information about the morphology of the area
can be easily incorporated in the global plan by designer).

• it does not require any online communication link -the paths are
predefined, and the measurements are gathered at the completion of
the experiment - between them or ground/vessel station, minimizing
the energy consumption.

• fully-coverage is guaranteed.

• The navigation-scheme (straight lines) enhances the localization ac-
curacy.

On the other hand, the usual practice has some vital drawbacks that limit
its performance:

• The navigation scheme is constant, dealing the same way (number
of samples), sub-areas with different height discrepancies or in more
abstract terms with different kind of importance.

• For realistic time/energy consuming missions, there is always a risk
of completely missing some important sub-part of the area, which is
located between the AUV’s paths.

• The coordination/cooperation of more than one AUV is not trivial
and in the most cases does not taking into consideration the initial
positions of the AUVs.

• Human intervention is necessary to appropriately define the multi-
robots’ not-overlapping routes.

It is emphasized that the proposed approach does not use any information
from the ground truth map or the usual practice map. Both these two maps
(usual practice and ground truth) are needed for evaluation purposes.

4.6.3 Experiments in Oporto’s Harbor

The objective of the experiments is to build a detailed map of two different
sub-areas of the Oporto’s harbor (Figure 4.8(a)). To accomplish such a
mission, in each case, 2 AUVs (Figure 4.8(c)) are deployed equipped with
single beam bathymeter sensor. It’s worth mentioning that such sensors
provide us a small amount of information about the sub-region where the
AUVs are deployed, practically only one point.

The experimental environment can be described as follows:
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(a) Deploying area, Oporto harbor (b) Neptus - Command and Control Software

(c) Autonomous Underwater Vehicle (d) AUV in operation mode

Figure 4.8. The available modules(hardware/software) for real-word Experiment

• In both cases the map is a square area with dimensions equal to
100× 100 meters.

• The number of AUVs is equal to NR = 2.

• The AUVs are moving within the terrain’s limits, i.e., within [Xmin,Xmax]
and
[Ymin, Ymax] in the x- and y-axes, respectively. Each AUV remain in
constant z so as to neglect any collision possibility.

• Experiment contacted for T = 500 time-steps.

In each time step, the web-service navigates the AUVs to the next
desired position through the NEPTUS (Figure 4.8(b)) application and
builds the detailed map. Overall, upon completions of the procedure,
500× 2 single beam bathymeter sensor measurements are available, in
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(a) Ground Truth Map

(b) Usual Practice Map

(c) Proposed Approach Map based on 1000 Samples

Figure 4.9. Ground truth, Usual Practice and produced by the Proposed Approach
Map Employing 2 AUVs for #Sharp_Surface Map
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(a) Ground Truth Map

(b) Usual Practice Map

(c) Proposed Approach Map based on 1000 Samples

Figure 4.10. Ground truth, Usual Practice and produced by the Proposed Approach
Map Employing 2 AUVs for #Slop_Surface
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order to form the high detailed version of the observable area. Figures
4.9 and 4.10 illustrate the ground truth, the usual practice, as well as the
generated, from the Proposed CAO-based Approach, version of the maps
for the 2 areas on with we performed the experiments respectively. The
first map, will be referred hereafter as #Sharp_Surface while the second
one as #Slop_Surface10.

In order to evaluate the effectiveness of the proposed approach, we
calculate the L2 −Norm11, between the ground truth and the usual practice
map as well as between the ground truth and the Proposed Approach map.
Alongside the accuracy of the Proposed Approach map, we also evaluate
the reliance of the proposed approach on the number of measurements.
The results are depicted in Tables 4.2 and Table 4.3. Apart from the
estimation-accuracy, expressed in terms of Euclidean norm, we display the
number of points (measurements) that were used, to present an overview
about the total work that is needed in each case.

Approach Number of % of samples, w.r.t. ground L2-norm

Samples truth (27961 samples) accuracy

Proposed 1000 3.58% 609.88

Usual 7503 26.83 % 900.27

Table 4.2. L2 −Norm and Number of Samples, between the ground truth version of
the #Sharp_Surface map vs the Proposed Approach(cao-generated) map and the Usual
Practice map

As one can see, the proposed approach, using only 1000 measurements
(86.7% reduction in the #Sharp_Surface and 77.8% in the #Slop_Surface),
is able to construct a map with more than 32% accuracy in the first case
and 2.1% in the second, as compared to the today’s usual practice.

10Please note that both interpolated versions of usual practice present some ridges along
the constructed terrain. These ridges correspond to the areas where the AUVs traversed and
therefore the samples’ concentration is greater than the rest of the terrain.

11In order to implement this, at first we discretize, with a sufficient small step, the areas
to be compared and afterwords we apply the L2 −Norm on the vectorized versions of the
sampled areas.



100 4 Real-time Multi-Robot Exploration of Unknown Environments

Approach Number of % of samples, w.r.t. ground L2-norm

Samples truth (35846 samples) accuracy

Proposed 1000 2.79% 828.17

Usual 4509 12.58 % 846.24

Table 4.3. L2 −Norm and Number of Samples, between the ground truth version of
the #Slop_Surface map vs the Proposed Approach(cao-generated) map and the Usual
Practice map

4.7 Conclusions

A novel method for dealing the problem of exploring an unknown area using
multi-robot teams under environmental and communication constraints,
while simultaneously building a detailed map of the environment has been
proposed. Based on this approach we are transforming a standard trajectory
generation problem so as to optimize a transformed version of trajectory
generation efficiency, employing CAO algorithm. The methodology pro-
posed is independent of requirements regarding operational characteristics
of the robots like communication range and type of sensors.

Additionally, the proposed scheme, in relation to the vast majority of
the optimal/dynamic programming approaches, takes into account the
non-linear characteristics of the robots’ sensors and the fact that the
operation area is unknown. In a nutshell, the proposed methodology aims
to bridge the gap between the state-of-the-art algorithms and the actual
practices, by successfully navigating the robots through environments,
where the objective/reward function cannot be calculated a-priori, due to
the afore-mentioned reasons.

The applicability and adaptability of our approach in realistic scenarios
has been demonstrated through simulated and real-life underwater sea-floor
mapping experiments in the port of Porto, Portugal using a team of AUVs.
The proposed approach is independent of the SLAM methodology employed
since it is based on the approach “to do the best it can be done” based
on the current configuration, given the communication/sensing/SLAM
system, allowing even cases where the multi-robot team comprises of
vehicles with mutually different sensing capabilities or operating different
SLAM algorithms.

With an outlook to the future work, we consider incorporating the
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localization problem to our decision-making mechanism. The proposed
approach can be safely classified under the spectrum of the optimization
based ones. These algorithms allow to interface additionally/secondary
objectives, by appropriately modifying/revising the performance criterion.
Moreover, we will focus our efforts on the development of an approach
that will primarily retain all the achievements of the proposed method
(operate under unknown terrain, without actual evaluate the candidate
configurations, etc.), but at the same time will able to provide near-globally-
optimal solutions for all the experiment’s horizon and not only for the next
timestep. In order to build such a non-greedy algorithm, we should apply
an offline learning scheme where the algorithm will translate the sensors’
measurements into new commands’/robots’ directions, by applying some
transformation on them, that has been learnt from numerous simulation
or/end real-life experiments.
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5.1 Introduction
In the final chapter of this thesis, we deal with multi-robot tasks where
the user-defined objectives of the mission can be casted as a general opti-
mization problem, without explicit guidelines of the sub-tasks per different
robot. Due to the unknown environment, unknown robots’ dynamics, sen-
sor nonlinearities, etc., the analytic form of the optimization cost function
is not available a priori. Therefore, standard gradient descent-like algo-
rithms are not applicable to these problems1. To tackle this, we introduce
new resource optimization algorithm – specifically tailored to the context
of multi-robot applications – that extends the Cognitive-based Adaptive
Optimization (CAO) algorithm (as proposed in the previous chapter).

In a nutshell, an update cycle on decision variables of the proposed al-
gorithm consists of the following steps. Initially, the robots’ measurements
are gathered in a central node (robot-leader or base station) where the
calculation of the global objective function takes place. In the sequel, each
robot’s contribution to the cost function is approximated and forwarded
to the corresponding robot. In a fully distributed fashion, each robot con-
structs a linear-in-the-parameters estimator to approximate the (unknown
- problem dependent) evolution of its sub-cost function. Then, each robot
generates random (or pseudo-random) perturbations around its current
state and neglects the ones that violate the operational constraints (if any).
Finally, the next robot’s action is the one valid perturbation that achieves
the best score on the previously constructed estimator.

The primary deviation of the proposed approach, compared to the
original version of CAO, is in its distributed nature. More precisely,
although each robot does not know explicitly either the decision variables
of the other robots nor their measurements of them, it is able to update
its own decision variables effectively, in a way to cooperatively achieve
the team objectives. The later can be achieved through an exclusive
for each robot cost function, designed so as to encapsulate not only the
mission objectives but also the other robots’ dynamics (for more details see
section 5.3). Rigorous arguments establish that, despite the fact that the
dynamics that govern the multi-robot system are unknown, the proposed
methodology shares the same convergence characteristics as those of block
coordinate descent algorithms [68]. As it is exhibited in the presented
applications, the distributed nature of the proposed algorithm allows, also,
the rapidly convergence, especially in cases with many robots, each of

1The reader is referred to section 2.2 for an succinct discussion regarding the classes of
alternative methodologies, presenting their advantages and disadvantages.
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which with several decision variables.
The contributions with respect to the multi-robot approaches, as pre-

sented in chapter 2, are the following:
(i) The problem is formulated in a continuous domain without the need

to either know all the states and measurements beforehand, or to perform a
relaxation on the original multi-robot problem (optimal control & dynamic
programming approaches). The ability to cope with unknown dynamics
(robots-environment) and unknown cost functions, imparts a generality to
the proposed algorithm, regarding the spectrum of applications that can
be utilized.

(ii) However, the main advantage of the proposed algorithm is that it
does not require, either a priori calculation of the cost function (optimal-
one-step-ahead approaches) or the analytical form of the system to be
optimized to be explicitly known (optimal control & dynamic programming
approaches). Instead, the proposed algorithm can cope with cost functions,
the calculation of which can only be achieved by actual performing the
corresponding course of actions. In the same vein, the proposed algorithm
does not need to actually evaluate the decisions variables in the vicinity
of their current values, so as to appropriately calculate the corresponding
update on them. The proposed algorithm instead, is able to find the
(locally) optimal configuration for the decision variables, by using only
noise-corrupted measurements collected from the robots’ sensors.

(iii) Furthermore, instead of relying on exhaustive, computational-
intensive simulations (simulation-based approaches), the proposed scheme
is able to on-line learn the problem specific characteristics that affect the
user-defined objectives. By doing so, the proposed algorithm does not need
any elaborate model, in order to learn its decision-making mechanism.

It has to be emphasized that apart from rendering the optimization
problem practically solvable, the proposed approach preserves additional
features that make it particularly tractable:

(i) its complexity is low, allowing real-time implementations;

(ii) it can handle a variety of physical constraints;

(iii) it has fault tolerant characteristics, i.e. on-line redesign in cases of:
one or more robots are added or removed, an extra task has been
added to the set of objectives, etc.;

(iv) it is able to adapt its behavior even in cases where a time-varying
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objective function is employed2.

The proposed control strategy is evaluated on four different simula-
tion set-ups under multiple scenarios, against both general purpose and
specifically-tailored to the problem in hand, algorithms. All the simulation
set-ups have been chosen so as i) the objective of the multi-robot mission
can be expressed in cost function ii) the evaluation of which cannot be
performed beforehand. In the first simulation set-up, the objective is to
spread out the robots over a 2D environment, while aggregating in areas of
high sensory interest. What is important about this set-up is the fact that,
the robots do not know beforehand where the areas of sensory interest are,
but they learn this information on-line, utilizing sensor measurements from
their current positions. The proposed algorithm is evaluated together with
the approach as proposed in [1] for the problem in hand. In the second
simulation set-up, the trajectories of the robots should be designed in real-
time having a twofold objective (which forms a trade-off). On one hand,
the part of the 3D terrain that is monitored (i.e. visible) by the robots have
to be maximized and on the other hand, for each one of these visible points
in the terrain, the closest robot has to be as close as possible to that point.
This problem along with a centralized CAO-based methodology has been
proposed in [2], therefore a detailed analysis regarding the performance
of both algorithms, in different scenarios, is presented. Moreover, the
proposed methodology is evaluated in a time-varying formation control
scenario for a group of robots. In this simulation set-up, the robots have
to perform a user-defined trajectory, while they are holding a pre-specified
formation [105]. Last but not least, the proposed methodology is evaluated
in the task of persistent coverage. The objective of this application is to
maintain a user-defined level of coverage in an unknown environment [49].
This is a quite challenging task as the mission objectives constantly change,
while the unknown morphology of the environment does not allow the
prior calculation of the improvement in coverage task. Conclusively, if
it is possible to define a cost function which encapsulates the mission
objectives and can be calculated through the robots’ measurements for
every decision variables configuration, the proposed methodology will be
directly applicable to the corresponding problem.

The remainder of the chapter is structured as follows: section 5.2
presents the translation of a general purpose multi-robot framework to
a constrained optimization problem, highlighting the difficulties and the

2Please note that the rate of change in the objective function should be smaller than the
learning capabilities of the algorithm (see section 5.2)
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obstacles of the general problem. The description of the proposed algorithm,
that tackles such a problem, is presented in section 5.3. sections 5.4,
5.5 and 5.7 present four indicative multi-robot applications: adaptive
coverage of unknown 2D environment, 3D surveillance of unmapped terrains,
time-varying formation control and persistent coverage of unknown 2D
environments, respectively. In all these sections, we perform a series of
simulations in different scenarios to adequately analyze the performance of
the proposed algorithm. The overall conclusions of the chapter are drawn
in section 5.8.

5.2 Problem formulation
Consider a team (swarm) which consists of N robots interacting with
each other, towards achieving a global set of objectives. Let’s assume the
following augmented decision vector

x(k) ≡ [xτ1(k), x
τ
2(k), . . . , xτN(k)]

τ (5.1)

where xi(k) ∈ Rn denotes the decision variables of the i-th robot at k
iteration. These decision variables represent the controllable parameters of
the available robots (e.g. position, motors, propellers, thrusters, rotation
of the cameras, etc.). Furthermore, the augmented vector which contains
the available exteroceptive measurements takes the form

y(k) ≡ [yτ1(k),y
τ
2(k), . . . ,yτN(k)]

τ (5.2)

where yi(k) ∈ Rm denotes the measurement vector of the i-th robot at k
iteration and its evolution can be represented as

yi(k) ≡ hi(k, xi(k)) (5.3)

where hi(·) denotes an unknown, nonlinear function that depends on both
xi(k) and the specific problem characteristics.

The accomplishment of the multi-robot system’s objectives (e.g. map-
ping, surveillance, coverage, etc) can be translated to the minimization (or
maximization)3 of a specifically defined global cost function k, i.e.,

k ≡ J

(
x1(k), x2(k), . . . , xN(k)

)
(5.4)

where J(·) is a non-negative, nonlinear, scalar function which depends –
apart from the robots decision variables – on the particular dynamics of the

3Without loss of generality, in the rest of the chapter we assume a minimization problem.
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problem (e.g. the environment where the robots live and interact). Due to
the dependence of the function J on the particular problem characteristics,
the explicit form of the function J is not known in practical scenarios;
as a result, standard optimization algorithms (e.g. gradient descent) are
not applicable. However, in most practical cases, the current value of the
objective function can be approximated from the robots’ measurements,

J

(
x1(k), . . . , xN(k)

)
= J
(
y1(k), . . . ,yN(k)

)
+ ξk (5.5)

where ξk denotes the noise introduced in the estimation of k, due to
the presence of noise in the robots sensors.4 It must be emphasized that,
contrary to J, J can be evaluated “offline”, if the measurement vector
y(k) is available. However, the acquisition of a new measurement vector
requires an actual evaluation of the decision variables on the robotic system
(5.2),(5.3).

Apart from the problem of dealing with a criterion for which, an explicit
form in not known but only its noisy measurements are available at each
time, the decision vector x(k) should satisfy a set of constraints that, in
general, can be represented as follows:

C (x(k)) 6 0 (5.6)
where C is a set of non-linear functions of the decision variables x(k).

As in the case of J, the constraints function C depends on the particular
problem characteristics and an explicit form of this function may be not
known in many practical set-ups; however, it is natural to assume that
the low-level algorithm is provided with information whether a particular
selection of decision variables x(k) satisfies or violates the set of constraints
(5.6).

Given the mathematical description presented above, the problem of
on-line choosing the decision variables for a multi-robot system, so as to
accomplish a set of objectives, can be mathematically described as the
following constrained optimization problem:

minimize k

subject to C (x(k)) 6 0
(5.7)

4Please note that, although it is natural to assume that the noise sequence ξk, is a stochastic
zero-mean signal, it is not realistic to assume that it satisfies the typical Additive White Noise
Gaussian (AWNG) property, even if the robots sensors do; as J is a nonlinear function of
the robots decision variables and thus of the robots sensor measurements (5.3), the AWNG
property is typically lost.
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As already noticed, the difficulty in solving, in real-time the constrained
optimization problem (5.7) lies in the fact that explicit forms for the
function J and C are not available. Although this is not the only problem,
jointly optimizing a function over multiple robots (N), each of which with
multiple decision variables (n) can incur excessively high computational
cost.

5.3 Proposed algorithm

Having defined the fundamental aspects that govern a multi-robot applica-
tion, we will proceed on presenting the proposed algorithm for updating
the decision variables x(k) so as to minimize the cost function (5.4) subject
to (5.6).

(STEP 1 ) As first step, and for each iteration k, the robots transmit
the acquired measurements, after the execution of x(k) decision variables.

It must be emphasized that, this step can be performed even in cases
where global communication between all robots is not feasible. In such case,
each robot can send and receive measurements to and from peer (adjacent)
robots, until all the measurements aggregate to the corresponding processor
unit (robot or ground station). The latter can be guaranteed by introducing
an extra condition on the constraints set (5.6), ensuring the connectivity –
if applicable to the problem in hand – among the different robots (e.g. the
communication range constraint in chapter 4).

(STEP 2 ) Thus, the global cost function can be straightforwardly
derived from [see (5.4) and (5.5)]:

k = J
(
y1(k), . . . ,yN(k)

)
Additionally, for each i-th robot calculate the following discrepancy:

∆i(k) ≡ k−

J
(
y1(k), . . . ,yi−1(k),yi(k− 1),yi+1(k) . . . ,yN(k)

) (5.8)

In other words, ∆i(k) encapsulates the effect of the xi(k) on the current
problem for the k timestamp.

Please note that, since

J
(
y1(k), . . . ,yi−1(k),yi(k− 1),yi+1(k) . . . ,yN(k)

)
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is analytically available, we can calculate this term, although the
resulting value does not necessary correspond to the actual value when the
robots have the following decision variables:

{x1(k), . . . , xi−1(k), xi(k− 1), xi+1(k) . . . , xN(k)}

Although, there may be a discrepancy between the way we calculate J(·)
and its actual value, that does not affect the convergence properties of the
proposed algorithm. This discrepancy is application oriented and depicts
the effect of other robots’ decisions on each robot’s measurements. If the
measurements acquired from a robot only affects its own decision variables
and the problem itself (5.3), then there is no discrepancy at all.

(STEP 3 ) Next, the calculated discrepancy ∆i(k) is sent to the i-th
robot. After this step all the calculations are performed locally, building
a system that is resilient to robot failures, does not require any global
coordination and all the decision variables’ updates are made in a (parallel)
distributed fashion.

(STEP 4 ) Each i-th robot – at the same k-th iteration – performs the
following:
• Calculate the Ji(k) that corresponds to the last executed decision

variables xi(k) as:

Ji(k) = Ji(k− 1) +∆i(k), ∀k > 1, Ji(0) = 0 (5.9)

Therefore, each robot is responsible to choose the next values for its
decision variables xi(k+ 1), having as only objective the minimization of
its corresponding cost function Ji(·)5. Each such sub-problem is a lower-
dimensional minimization problem, and thus can typically be solved more
easily than the full problem.
• Construct an estimator for Ji(k+ 1):

Ji(k+ 1) ≈ Ĵi(k+ 1) = θτi (k)φi
(
xi(k)

)
(5.10)

where φi denotes the non-linear vector of L regressor terms, θi denotes
the vector of the parameter estimates and L is a positive user-defined
integer which denotes the size of the function approximator (5.10). The
vector φi of regressor terms must be chosen so that it satisfies the so-called
Universal Approximation Property [106], i.e. it must be chosen so that
the approximation accuracy of the constructed approximator (5.10) is an
increasing function of the approximator’s size L. Polynomial approximators,
radial basis functions, kernel-based approximators, etc. are known to satisfy
such a property [106].

5In general case:
∑N
i=1 Ji(k) 6= k and

∏N
i=1 Ji(k) 6= k, ∀k
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Algorithm 3 φi construction
Require: maxorder, L1,L2, . . . ,Lmaxorder, xi, n
Ensure: φi
1: φi = 1
2: for j ∈ {1, ...,maxorder} do
3: for v ∈ {1, ...,Lj} do
4: g = 1
5: for l ∈ {1, ..., j} do
6: Generate r := random integer ∈ {1, . . . ,n}
7: g = g · x(r)i
8: end for
9: φi =

[
φτi ,g

]τ
10: end for
11: end for

Experimenting with different types of φi, in different multi-robot set-ups
(sections 5.4-5.7 and [55, 56]), it was found that it is sufficient to construct
a polynomial estimator as in algorithm 3. The tunable parameters of
this procedure are the maximum order of monomials (maxorder) and the
corresponding number of monomials per order L1,L2, . . . ,Lmaxorder, where
L1 + L2 + · · ·+ Lmaxorder = L− 1 should be hold. Mathematically speaking,
the number of different monomials per order is given by the number of
possible combinations with repetitions (multiset coefficient):((n

i

))
=

(
n+ i− 1

i

)
=
n(n+ 1)(n+ 2) · · · (n+ i− 1)

i!

where
(
a
b

)
denotes the binomial coefficient. However, the summation

L1 + L2 + · · ·+ Lmaxoder may exceed the number of available monomials
L− 1. A usual practice is to downscale the number of monomials as follows:

Li =

[(
n+ i− 1

i

)
s

]
(5.11)

where [·] denotes the nearest integer and s denotes the following scaling
factor:

s =
L− 1∑maxorder

i=1
(
n+i−1
i

)
Having defined the vector of regressor terms φi, the estimator vector

θi can be calculated using standard least-squares estimator principles, i.e.,
θi is obtained by solving the following optimization problem:
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θi(k) = argmin
ϑ

k−1∑
`=k−T(k)

(
ϑτφi

(
xi(`)

)
− Ji(`+ 1)

)2

(5.12)

where T(k) denotes the time-window over which the least-squares es-
timation is taking place. There are several algorithms for solving the
least-square problem (normal equation, QR decomposition, SVD, etc.).
Although, singular value decomposition (SVD) is more computational
intensive in comparison to other alternatives, we utilize this approach due
to the fact that it is more numerical stable (e.g. when the problem is
ill-conditioned) [107].
• Choose a positive function α(k) to be either a constant positive

function or a time-descending function satisfying α(k) > 0,
∑∞
k=0 α(k) =∞,

∑∞
k=0 α(k)

2 < ∞. Although, the proof of convergence (as presented
in the next sub-section) can be established for both the choices, in our
simulation experiments, we found out that the choice of a constant positive
is more robust.
• Generate (randomly or pseudo-randomly) a set of M valid candidate

perturbations:
δx

(1)
i (k), δx(2)i (k), . . . , δx(M)

i (k)

where δx(j)i (k) are vectors of the same dimension as xi(k) and M is a
positive integer that is larger6 than 2n. A candidate perturbation j is
considered valid if7 :

C
([
xτ1, . . . , xτi−1, xτi + δx

(j)
i , xτi+1, . . . , xτN

]τ)
6 0 (5.13)

The random choice for the candidates is essential and crucial for the
efficiency of the algorithm, as such a choice guarantees that Ĵi(k+ 1) is
a reliable and accurate estimate for Ji(k+ 1); see [90] and [91] for more
details.
• Estimate the effect of each of the candidate perturbations to the

current vector xi(k) by employing the previously constructed estimator
(5.10) and pick the candidate perturbation with the “best” effect, i.e.,
choose the vector δx(j

∗)
i (k) that satisfies

δx
(j∗)
i (k) = argmin

j=1,...,M
θτi (k)φi

(
xi(k) +α(k)δx

(j)
i (k)

)
6See [90] for more details about the sufficiency of this condition.
7The distributed nature of the algorithm may impose a stricter set of constraints, in

comparison with cases where a centralized control is applied.



5.3 Proposed algorithm 113

• Update the i-th robot decision variables as:

xi(k+ 1) = xi(k) +α(k)δx
(j)
i (k) (5.14)

Remark 1 The above distributed update of the decision variables (STEP
4 ) does not need information about what is happening to the rest of the
robots. All the needed information has been “packed” to the scalar value
∆i(k). At each iteration, each robot attempts to minimize the objective
function Ji(k) by assuming that the other robots’ decision variables are
part of the problem to be solved.

5.3.1 Convergence analysis

Remark 2 As shown in [90,91], the distributed algorithm implemented
in each robot (STEP 4 ) guarantees that: If M > 2× dim (xi), the vector
φ satisfy the Universal Approximation Property and the functions Ji
and C are either continuous or discontinuous with a finite number of
discontinuities, then the update rule of xi (5.14) is equivalent with:

xi(k+ 1) = xi(k) −A(k)∇xiJi + ε(k)

where A(k) is a positive definite matrix which depends on the choice of
α and ∇xiJi denotes the gradient of Ji with respect to the xi decision
variables. Additionally, ε(k) is a term that converges exponentially fast to
the subset D = {ε(k) : |ε(k)| ε}, where ε is a positive constant that can be
made arbitrarily small [by increasing the size L of the estimator (5.10)].

The next theorem describes the properties of the proposed methodology;
as the proof of this theorem is along the same lines as in [108, Proposition
2.7.1], only a sketch of proof in provided.
Theorem 3 The local convergence of the proposed algorithm can be guar-
anteed in the general case where the global cost function J and each robot’s
contribution Ji are non-convex, non-smooth functions.8

Sketch of the proof: By using Remark 2 (projected gradient-descent on
the minimization of Ji) and equations (5.8)-(5.9), we can establish that the
distributed update on each robot is equivalent with:

xi = argmin
w

J (x1, . . . , xi−1,w, xi+1, . . . , xN)

8Moreover, recent studies imply that BCD methodologies can achieve global convergence
even in cases where the global cost function (5.4) is non-convex but holds some properties.
For example, in [109] the authors establish global convergence of the BCD algorithm in the
general case where the global cost function J and each robot’s contribution Ji are non-convex
functions, but the so-called Kurdyka-Łojasiewicz (KL) property is satisfied.



114 5 Distribute Online Multi-Robot Model-free Approach

subject to (5.13), and therefore, the proposed algorithm approximates the
behavior of the Block Coordinate Descent (BCD) [68, Algorithm 1] family
of approaches. Following the proof described in [108, Proposition 2.7.1],
it is straightforwardly to see that: if the minimum with respect to each
block of variables is unique, then any accumulation point of the sequence
{x(k)} generated by the a BCD methodology is also a stationary point.

5.3.2 Complexity

For STEPS 1-3 the computational burden is accumulated in the cal-
culation of ∆i(k) (5.8) for each i robot. However, the calculation of
J(·) is problem-dependent, thus, it is not possible to analytically derive
bounds regarding its complexity. In the reported cases [cost functions
(5.19),(5.21),(5.23),(5.26) and (5.30)], as well as in the most real-world
applications, J(·), computational needs grow, at most, quadratic with the
number of robots × the number of measurements per robot, i.e. O

(
N2m2).

Technically, the above threshold expresses the case where an operation is
needed per different pair of measurements {y(i)a ,y(j)b }, with a,b ∈ {1, . . . ,m}

and i, j ∈ {1, . . . ,N}. Overall, J(·) is evaluated N+ 1 times, one for each
robot and one for the global cost function term (5.8), therefore, STEPS
1-3 are expected to have O

(
N3m2)

The computational requirements for STEP 4, which is computed on
each robot, are dominated by the requirement of solving the least-squares
problem (5.12). According to [110, Section 5.5.6, figure 5.5.1], the best
algorithms for least-squares problem using SVD procedure, take time that
is proportional to O

(
T2L+ L3). In the interest of simplicity, and due to the

fact that T ' L, we can assume that STEP 4 complexity scales as O
(
L3).

Although, there exist no theoretical results for providing the lower bound
L̄ for the size of the regressor vector, practical investigations on many
different applications (e.g. [55,103,111]) indicate that it is sufficient enough

STEP Complexity Practical Comments

1-3 O (J (y)) O
(
N3m2

)
Application

dependent

4 O
(
L3
)

O(n3) Least-squares

Table 5.1. Complexity analysis
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to choose L > L̄ = 2×n, to adequately tackle the local approximation of
Ji. Therefore, it is expected that the computational requirements will grow
with O(n3). Although this step is repeated for each robot (N times), the
distributed nature of the algorithm guarantees that no extra computational
needs will be required.

Overall, it is expected that the complexity of computing N times the
cost function J(·) dominates the requirement of solving the least-squares
problem for one robot. Table 5.1 summarizes the complexity bounds
discussed in this subsection.

Remark 3 We close this section by accumulating the free parameters of the
proposed algorithm. The set is composed by the number of perturbations
M, the total number of utilized monomials L and the time-window T over
which the least-squares estimation is taking place. According to Remark 2,
the number of perturbationsM should be greater than 2×n. Furthermore,
the complexity analysis of STEP 4 indicates that the estimator (5.10)
should have at least L̄ = 2× n number of monomials. Finally, T is a
non-negative integer that expresses the desired “forgetting factor” for the
constructed estimator. In the following experimental set-ups, we set the
algorithm’s parameters within these bounds. However, if one wants, all the
parameters could be manually tuned in order to achieve better – application
dependent – performance.

5.4 Adaptive coverage control utilizing Voronoi par-
titioning

The first simulation set-up is the well-investigated optimal robots’ place-
ment problem [1, 20, 112]. The objective for the network of robots is to
spread out over an environment, while aggregating in areas of high sensory
interest. Furthermore, the robots do not know beforehand where the areas
of sensory interest are, but they learn this information on-line from sensor
measurements. The aforementioned task can be found in applications
such as environmental monitoring and clean-up, automatic surveillance of
rooms/buildings/towns [113–115], or search and rescue [116,117].

5.4.1 Problem definition

It is assumed that the operational area is a bounded Q ⊂ Rn. A point
inside this environment is denoted by q and the decision vector xi for the
i-th robot contains its position in Q. Also, let {V1, . . . ,VN} be the Voronoi
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partition of Q, for which the robot positions are the generator points:

Vi = {q ∈ Q| ‖q− xi‖ 6
∥∥q− xj∥∥ ,∀j 6= i}

Let ζ(·) to be the unknown sensory function such that ζ : Q → R>0
(where R>0 is the set of strictly positive real numbers). In other words,
this function ζ(·) assigns in each location of the available space Q a weight
of importance, related to the necessity of being covered.

The global cost function for the problem in hand, admits the following
form:

J(x(k)) =
N∑
i=1

∫
Vi

1
2
‖q− xi‖2 ζ(q)dq (5.15)

Apparently, the above function cannot be calculated in advance due to the
dependence of the unknown sensory function ζ. Without loss of generality,
we assume that the sensory function is given by:

ζ(q) = K(q)τυ+O(1/W), ∀q ∈ Q (5.16)

where K : Q → RW
>0 denotes a vector of bounded, continuous basis

functions (e.g. Gaussians, wavelets, sigmoids, etc.) and υ ∈ RW is the
parameter vector. The deviation from the actual value of ζ is in the order
of the number of basis functions O(1/W). Although K is known a priori,
the mixing parameters vector υ is environment-dependent and generally
unknown. However, the value of the sensory function can be measured from
the robots’ sensors (e.g. temperature/chemical sensor) at their current
position’s configuration x(k).

y(xi) = ζ(xi) (5.17)

The value of parameter estimation vector υ̂ can be approximated
through these measurements, utilizing standard parameter estimation
techniques [e.g. least-squares approach (5.12)]. Therefore, after the update
on the parameter vector υ̂, a new update on the belief regarding the sensory
function is also available thought the equation:

ζ̂ = Kτυ̂ (5.18)

Hence, the value of the unknown cost function can be approximated
through the following equation:

J(y(k)) =
N∑
i=1

∫
Vi

1
2
‖q− xi‖2

Kτ(q)υ̂dq (5.19)



5.4 Adaptive coverage control utilizing Voronoi partitioning 117

5.4.2 Simulation results

The operation area was restricted to the plane [0, 1]2, so any value, that is
afterwards mentioned, has been casted to this context. For implementation
reasons, we assume that the operation area consists of 225 discrete points,
uniformly distributed across the plane of [0, 1]2. The sensory function,
ζ(q), was parameterized as a linear combination of 49 Gaussians, i.e.
K(j) = 1

2πσ2
j

exp −
(q−µj)

2

2σ2
j

, ∀j ∈ {1, . . . , 49}. Each standard deviation
is set to be σj = 0.02 and the Gaussians centers µj are chosen so as
to be uniformly distributed in the operational area (seven Gaussians in
each row and column). The unknown parameter vector was chosen as
υ = [100, 0.1, 0.1, . . . , 0.1, 100]τ, i.e. the lower left and the upper right
Gaussians dominate the sensory function ζ(q). Finally, the equations are
integrated using a fixed step of α = dt = 0.01 and the initial values for
the estimation of parameter vector (robots’ knowledge) was chosen to be
υ̂ = [0.1, 0.1, . . . , 0.1]τ.

Additionally with the proposed approach, we present simulation results
from the algorithm as proposed, for the problem in hand, in [1]. The weights
selection was undertaken following the authors’ instructions in [1, Section
7.2]. To construct comparable simulations instances, we utilize the same
learning rule for the parameter vector υ̂ [1, eq. 13]. In both the evaluated
algorithms, the update of parameter vector was performed, by aggregating
all the robots’ measurements. To evaluate the performance of each approach
in each timestamp, we also calculate the real value of the cost function
(5.15), but none of the evaluated algorithms utilizes this information.

The proposed approach was employed with a constant time-window
for the least-squares estimation of T = 30 and the number random per-
turbations was set to be M = 100. To approximate each robot’s cost
function evolution, we utilize a 3rd order monomial estimator with L = 10
and using (5.11) we calculate the number of monomials per order to be
L1 = 2,L2 = 3 and L3 = 4.

Random initial positions scenario

In the first simulation scenario, the robots were placed randomly along the
x and y axes of the operation area. An example of this simulation set-up is
illustrated in figure 5.1, where the figure 5.1(a) illustrates the robots’ initial
positions and figure 5.1(c) presents the robots final positions, as calculated
by the proposed methodology. We mark with ‘x’ the weighted centroid of
each robot’s Voronoi partition. As one can see in figure 5.1(c), the robots
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gathered around the areas with the highest values of the unknown sensory
function ζ(·).

(a) Initial positions (b) Intermediate stage (c) Final configuration

Figure 5.1. Illustrative example with random initial positions for the robots. In these
3 snapshots is sketched how the proposed algorithm drives the available robots so as to
completely cover the space and to aggregate around areas with high sensory interest. The
‘x’ mark indicates the corresponding weighted centroid of each robot’s Voronoi partition.

Figure 5.2 presents a comparison study between the evaluated algo-
rithms, over different sizes of robot teams. The number of robots was
chosen to be 10,15,20 to 25 robots and for each configuration, we performed
20 experiments with randomly selected initial robots’ placement. The aver-
age, final achieved cost function (5.15) values, along with the corresponding
confidence intervals are illustrated to figure 5.2(a). Additionally, we present
the summation of the cost function over the course of each simulation pair
[figure 5.2(b)]. It must be emphasized that, although the summation of the
cost function may be strongly dependent on the initial robots’ positions
the final achieved value has a small variance around the average value.
This feature highlights the ability of the proposed approach to converge to
an optimal configuration, independently of the initial conditions.

Right half-plane scenario

In the second simulation scenario, the robots’ initial positions were con-
strained inside the right half-plane of the operation area. Generally, this
scenario has a greater level of difficulty, compared to random initialization,
as the robots can easily get stuck in highly sub-optimal situations. Figure
5.3 illustrates an instance of such a scenario where the proposed approach
was utilized.

As in the previous scenario, we present a comparison between the
evaluated algorithms for different sizes of robot teams. The results are
illustrated in figure 5.4. Again, the proposed approach utilizes all the
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(a) Final achieved value of the cost function (b) Summation of the cost function over the
experiment’s horizon

Figure 5.2. Comparison study for the random initial positions scenario: proposed
algorithm (blue) and approach presented in [1] (red).

(a) Intial positions (b) Intermediate stage (c) Final configuration

Figure 5.3. Illustrative example where the robots initial positions are constrained inside
the right half-plane of the operational environment. The proposed algorithm navigates
the robots around the space, utilizing only their measurements on their current positions,
to achieve the mission objective. The ‘x’ mark indicates the corresponding weighted
centroid of each robot’s Voronoi partition.

available team resources in order to achieve optimal robot configurations
with small variance around the average values.

5.5 Three dimensional surveillance of unknown ar-
eas

A more elaborate variation of the previously described set-up has been
proposed in [2] and applied in several domains (e.g [55, 57]). Although
the problem is again the optimal placement of robots in real-time, the
details of the simulation set-up are important. The terrain to be covered
is considered an unknown, non-convex, 3D surface, the formation of which
may form an arbitrary number and shape of obstacles. Additionally, we
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(a) Final achieved value of the cost function (b) Summation of the cost function over the
experiment’s horizon

Figure 5.4. Comparison study for the right half-plane scenario: proposed algorithm
(blue) and approach presented in [1] (red).

employ a realistic model for the robots’ sensors (section 4.4.2) and it is
utilized in all the simulation scenarios.

5.5.1 Problem definition

The decision variables (5.1) represent the positions of the robots in 3D
space, i.e., x =

[
xτ1, . . . , xτN

]τ, where xi ∈ R3.
Let us assume that the area to be monitored is constrained within a

rectangle in the (x, y)−coordinates as

U =
{
x, y | x ∈ [xmin, xmax], y ∈ [ymin, ymax]

}
where xmin, xmax, ymin, ymax are real numbers that define the “borders” of
the area of interest. Using the definition of U, the area can be defined as a
function that maps each point (x, y) ∈ U to a point z = z(x, y) [height of
unknown terrain at (x, y)]. A point q = (x, y, z) of the terrain is visible if
there exist at least one robot so that:

• the robot xi and the point q are connected by a line-of-sight;

• ‖xi − q‖ 6 thres, where thres defines the maximum distance the i-th
robot can “see”.

Given the robots configuration x(k) at timestamp k, we let V to denote
the visible area of the terrain, i.e. V consists of all points q ∈ U that are
visible from the robots.
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Furthermore, the measurements’ model for all the robots admits the
following form:

yxi−q =

 ‖xi − q‖+ hξ(xi,q)ξ if q ∈ V

undefined otherwise
∀q (5.20)

where hξ(xi,q) is the multiplicative sensor noise term (e.g. ∝ ‖xi − q‖2)
and ξ is a standard Gaussian noise. The above non-linear noise model is
a realistic representation of the noise effect in many real robot systems
[118] [119, Chapter 3-4]. For instance, in the case of sonar or cameras, the
noise affecting such sensors is proportional to the sensor-to-sensing point
distance, i.e., the larger is the robot-to-sensing point distance, the larger is
the sensor noise [57].

Having the above formulation in mind, we define the following combined
cost function that the robot team has to minimize:

J(y(k)) =
∫
q∈V

min
i=1,...,N

yxi−qdq+K

∫
q∈U\V

dq (5.21)

The first term, in the above equation, is equivalent with the cost function
considered in many coverage problems for known 2D environments [20].
The second term is related to the invisible area in the terrain. The positive
constant K serves as a weight for giving less or more priority to one of the
objectives.

Moreover, the set of non-linear constraints (5.6), which must be hold
for each new robots’ configuration x(k), include the following:

• the robots remain within the terrain’s limits, i.e. within [xmin, xmax]
and [ymin, ymax] in the x- and y-axes, respectively;

• the robots satisfy a maximum height requirement, while they do
not hit the terrain, i.e. they remain within [z+ dh, zmax] along the
z-axis, where dh denotes the minimum safety distance the robots
should always have from the terrain and zmax denotes the maximum
allowable operational height for the robots;

•
∥∥xi − xj∥∥ > dr, ∀i, j ∈ {1, . . . ,N} and i 6= j, i.e. the safety distance
between two robots is dr.
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5.5.2 Simulation results

For comparison purposes, we utilize the centralized CAO-based approach
that has been proposed for the problem in hand [2]. The proposed ap-
proach was parametrized with a time-window T = 40 for the least-squares
estimation, with M = 100 random perturbations, the corresponding ap-
proximator was a 3rd order monomial estimator with L = 18, and the
number of monomials per order (5.11) were L1 = 2,L2 = 5 and L3 = 10.
Acknowledging the fact that, the CAO algorithm performs optimization in
a higher dimension space, a different set of parameters was chosen. Evaluat-
ing the CAO version for different number of random perturbation, we found
that after M = 900 the number of random perturbation does not affect its
performance. Furthermore, to cope with the higher dimension state-space,
the time-window was set to T = 60 and the approximator was chosen
to be 3rd order monomial estimator with L1 = 3,L2 = 12 and L3 = 40
(with overall size of L = 56). In both the algorithms, we utilize α = 0.1
to update the robot’s positions. For the rest of this section, we use these
values in all the presented experiments.

To perform simulations in a realistic environment, we utilized an area
located in Zürich, Switzerland [figure 5.5(a)]. This map was generated
using a state-of-the-art visual-SLAM algorithm [120], which tracks the
pose of the camera while, simultaneously and autonomously, building an
incremental map of the surrounding environment. The dimension of the
terrain was squeezed to be inside of [0, 80] for x- and y-axes, while the
height of the terrain was between [0, 7.2]m and the maximum operational
height was set to 25m. Following the authors instructions [2], K weight
(5.21) was chosen to be 30, while both the safety distance from the terrain
and the minimum allowable distance between two robots were set to be
dh = dr = 0.5m. Finally, the duration of each experiment was set to
kmax = 600 timestamps.

Figure 5.5 depicts such a simulation instance with 6 robots. The
initial positions of the robots, as it is sketched in figure 5.5(b), were
selected to be “crowded” inside a sub-area of the terrain. Figures 5.5(c)
and 5.5(d) illustrate the final robots’ configuration, as calculated by the
CAO-based algorithm in 3D and 2D representation, respectively. The
corresponding final robots’ assignment as calculated by the proposed
approach is presented in figures 5.5(e) and 5.5(f). In both cases, the 3D
representation reports which sub-area of the terrain is cover by each robot,
while the 2D representation reveals the exact positions of the robots in x-y
plane and the distance between them. Figure 5.5(g) depicts the evolution
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of the cost function (5.21) for both the evaluated algorithms. Apart from
the difference in the convergent state, the proposed approach is able to find
this solution from its early steps (< 50). The centralized CAO needs more
iterations to learn the dynamics of the robots and the unknown terrain,
because it performs its optimization scheme in the higher dimension space
of R3N. On the contrary, the proposed algorithm separately – although
cooperatively – solves N optimization problems of the size of R3.

In the specific problem set-up, the speed of convergence requires extra
attention, as a slow convergence rate may lead to instability or loss of
convergence at all. More specifically, if a navigation algorithm does not
converge fast enough to the optimal configuration, one or more robots
may have reached high-altitude positions, from which they cannot acquire
useful measurements [out of their sensor capabilities (5.20)]. This is a
non-recoverable situation, as the robots do not have any “feedback” from
the terrain to properly evaluate their actions.

Scalability analysis

To validate both the efficiency and the effectiveness of the proposed al-
gorithm in case of bigger robot teams, we performed experiments with
5,10,15 and 20 robots9. For each different size of robotic team, we create 20
experiments instances with randomly chosen initial robots’ positions. The
aforementioned simulations instances are evaluated on both the proposed
approach and the centralized CAO-based one.

The results of these simulations are summarized in figure 5.6. Figure
5.6(a) displays the average value of the resulting cost function J(kmax),
along with the corresponding confidence interval, over the different number
of robots. Additionally, figure 5.6(b) displays a statistical analysis on the
summation of cost function

∑kmax
0 J(k), to investigate the convergence

rate of each pair (scenario-algorithm).
Overall, the proposed approach achieves an average improvement of

23% on the final achieved cost function value, with 55.33% improvement on
the deviation around that average value. Moreover, the summation of cost
function has been improved by 23.84% with a corresponding improvement
on the deviation of 65.06%, against the centralized CAO-based approach.
The proposed approach achieves these performance enhancements mainly
due to the two following reasons:

(i) the proposed algorithm has a better perspective on the change of
9Please note that, for the current experiment set-up with the previously defined sensor’s

capabilities, the utilization of more than 15 robots cannot significantly affect the coverage task.
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(a) 3D representation of the surface to be cov-
ered

(b) Initial positions of the available robots

(c) 3D view - CAO-based approach (d) Top view - CAO-based approach

(e) 3D view - proposed approach (f) Top view - proposed approach

(g) Cost function evolution

Figure 5.5. Indicative example: surveillance of unknown terrain by a team of robots.
The proposed algorithm and the CAO-based approach [2] are evaluated on the same
set-up (environment, robots initial positions, robots sensor capabilities).
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(a) Final achieved value of the cost function (b) Summation of the cost function over the
experiment’s horizon

Figure 5.6. Comparison study over different number of robots: proposed algorithm
(blue) and CAO-based approach [2] (red).

the overall cost function by evaluating the appropriate combinations of
historical measurements on that cost function [(STEP 2-3 ) of the proposed
approach].

(ii) the fast convergence of the proposed approach eliminates the chances
for a robot to be found out of its sensors capabilities. Therefore, the
proposed approach is able to converge on approximately the same robots’
configuration (per different team size), independently on the robots’ initial
positions. The latter is depicted on the substantial improvements on the
corresponding confidence intervals.

Fault tolerant characteristics

In this scenario, we investigate the performance of the proposed algorithm
in case of catastrophic events or hardware failures. More precisely, 5 robots
were initially deployed to perform the aforementioned coverage task, while
the duration of the experiment was increased to kmax =1000 timestamps.
It is assumed that, at timestamp 330, one robot didn’t correspond to
our control commands and the measurements’ flow had been interrupted.
Under these new circumstances, the surveillance task has to be undertaken
by remaining, properly working robots. After the completion of the 2/3 of
the available timestamps, we assume that another robot had an equipment
malfunction and cannot continue its covering task. Thus, the number of
available robots, which are called to cover the area of interest for the ∼300
remaining timestamps, has dropped to 3.

Figures 5.7(a)-5.7(f) illustrate the evolution of the robots’ positions dur-
ing the course of the previously described scenario, utilizing the proposed
approach. After both the robots’ malfunctions, the algorithm redesigns
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the remaining robot positions to achieve the best possible coverage. Over-
all, figure 5.7(g) demonstrates the evolution of the objective function for
the proposed approach in comparison with the centralized CAO-based
approach [2].

It must be emphasized, that the proposed algorithm does not need any
separately designed, fault detection mechanism (e.g. failure in establishing
communication, user detected, etc.), as it is able to implicitly derive this
kind of information from the changes in the cost function J with respect to
the commanded positions. The above feature is of paramount importance
in real-life multi-robots’ applications, since it removes the tedious – and in
many applications impossible – task to predict all the possible malfunctions,
as well as to design the appropriate course of actions.

Target monitoring

We close this section by investigating the algorithm’s capability to process
objectives that can be alternated/activated on-the-fly, without stopping
and restarting the mission. To achieve that, simultaneously with the
coverage task, we introduce the task of monitoring a target. For the sake
of this simulation set-up, it is assumed that – in addition to the sensors
which are responsible for the coverage task (5.20) – the robots are equipped
with exteroceptive sensors (e.g. cameras, sonars, etc) which are able to
estimate the targets’ positions, according to the following measurement
model:

yxi−χj =


∥∥xi − χj∥∥+ hξ(xi,χj)ξ if χj has

been detected

undefined otherwise

(5.22)

where χj denotes the j-th target’s position in 3D space, hξ(xi, xt) and
ξ – similar to equation (5.20) – denote the multiplicative sensor noise term
and the standard Gaussian noise, respectively. Therefore, an extra term
has to be added to the cost function (5.21) to appropriately evaluate the
progress of targets’ monitoring, as follows:

J(y(k)) =
∫
q∈V

min
i=1,...,N

yxi−qdq+K

∫
q∈U\V

dq

+Kt

nt∑
j=1

min
i=1,...,N

yxi−χj

(5.23)



5.5 Three dimensional surveillance of unknown areas 127

(a) Initial positions of the 5 available robots (b) Coverage task with all 5 available robots

(c) One timestamp after the malfunction on
the red robot

(d) Coverage task with 4 robots

(e) One timestamp after the malfunction on
the yellow robot

(f) Again, the algorithm redisgns the robots
positions to cover the area in the best pos-
sible way utilizing the available resources

(g) Cost function evolution

Figure 5.7. Malfunction scenario: 5 robots were initially deployed for the surveillance
task. At two distinct timestamps, the swarm of robots loses one of its member due to a
simulated malfunction. The surveillance task have to be continued with the remaining
team resources.
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where Kt serves as weight to give more or less priority to the monitoring
task in comparison with the coverage. In addition, nt denotes the number
of targets to be monitored.

The experiments were performed in the same terrain, under the previ-
ously defined set-up parameters. Figure 5.8 illustrates four key-snapshots,
which demonstrate the functionality of the proposed algorithm. Figure
5.8(a) depicts the robots’ initial positions along with the corresponding
coverage on the terrain. After 367 timestamps [figure 5.8(b)], the algo-
rithm has converged to the (locally) optimal robots’ configuration for the
coverage – only – problem. At k = 370 timestamp, it is assumed that a
target, which requires closer examination, appears inside the operation
area. The proposed algorithm, after the time needed to learn the changed
problem dynamics [activation of the third term in (5.23)], starts to adapt
the robots’ positions to minimize the updated cost function (5.23). More
precisely, as illustrated in figure 5.8(c), the purple robot (which was, at the
time, closer to the target) starts to gain height to minimize its distance
from the detected target. However, such an action leads to poor coverage
on the sub-area underneath that robot. To tackle the above undesirable
situation, the proposed algorithm redesigns the remaining robots’ positions
so as to achieve the best coverage of the terrain with the available resources.
The final robots’ positions with the corresponding coverage of the terrain
is sketched in figure 5.8(d). The evolution of the objective function for
the proposed approach in comparison with the centralized CAO-based
approach is demonstrated in figure 5.9. Conclusively, for this simulation
scenario, the proposed algorithm

• chooses to assign a robot to be as close as possible to the target
without any explicit command,

• adapts the other robots’ positions so as to “fill the hole” in the
coverage task, and

• achieves almost the same level of terrain coverage with the centralized
CAO-based approach for 5 robots [figure (5.9) dashed line], while 1
(out of 5) robots is occupied with other task.
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(a) Timestamp 1 - Initial positions of the 5 available robots

(b) Timestamp 367 - Coverage task with all 5 available robots

(c) Timestamp 427 - The purple robot starts to gain height to minimize the distance from
the target. As a consequence, it cannot cover adequately its underneath surface

(d) Timestamp 1000 - Finally, the algorithm redesigns the robots positions so as to cover the
area in the best possible way utilizing the available resources

Figure 5.8. Target monitoring scenario: The robots have been deployed having as
extra objective (apart from the surveillance task) to get as close as possible to a target.
The target appears inside the operation area of the robots in the middle of the mission.
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Figure 5.9. Cost function evolution in target monitoring scenario.

5.6 Time-varying formation control

5.6.1 Problem definition

In this application we focus on the problem of formation control in the
context of multi-robot systems. More specifically, the objective in this
problem set-up is to drive the robots so as to follow a desired trajectory,
while maintaining a commanded formation. In the this sub-section, we
state the basic definitions for the time-varying formation control problem
that will be useful in this application. More thorough discussions and
definitions around this problem can be found in [105].

The decision variables (5.1) represent the collective vector of all the
robots’ positions, i.e. x =

[
xτ1, . . . , xτN

]τ, where xi ∈ Rn.
Let σ1(x) to denote the centroid of the swarm of robots, i.e.

σ1(x) =
1
N

N∑
i=1

xi = B1x (5.24)

where B1 ∈ Rn×Nn is defined as:

B1 =
1
N

(1τN ⊗ In)

where In is the (n×n) identity matrix, 1N denotes the all-one vector with
N elements and the symbol ⊗ represents the Kronecker product.

Also, the formation of the system is denoted as a set of relative dis-
placements between the robots:

σ2(x) = [(x2 − x1)
τ(x3 − x2)

τ . . . (xN − xN−1)
τ]τ = B2x (5.25)
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where B2 ∈ R(N−1)Xffl×NXffl is defined as:

B2 =



−In In On . . . On On

On −In In . . . On On
... ... ... ... ... ...

On On On . . . −In In


where On denotes the (n×n) null matrix. Additionally, let σ1,d and

σ2,d to denote the desirable (user defined) centroid and formation of the
swarm of the robots, respectively. In other words, the goal of the problem
is translated to design the robots positions, such that the system’s σ1 and
σ2 converges, respectively to σ1,d and σ2,d. The particular form for the
cost function that realizes such a reasoning is as follows:

J(y(k)) = ‖σ1,d(k) − σ1 (y(k))‖+K ‖σ2,d(k) − σ2 (y(k))‖ (5.26)

where y(k) = x̄(k) ∈ Rn and denotes the estimation of robot’s position
(e.g. GPS measurements) for the k-th timestamp and K is a user defined
positive constant.

5.6.2 Simulation results

For comparison purposes, we adopt the simulation environment as described
in [105, Section 7.1]. The details of this simulation scenario are described
below:

• The robots positions along with the desired paths are defined inside
the 2D space, i.e. n = 2.

• The multi-robot system is composed of N = 5 robots.

• The scenario for this experiment requires for the centroid of the robots
(5.24) to move along a desired U-shape path, while the robots retain
a V-shape formation.

• The initial and final positions of the U-shaped trajectories (centroid)
are [1.25, 1.25]τm and [1.25, 2.75]τm, respectively.

• The overall length of the path covered by the robot’s centroid is about
8.2m
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The proposed approach was employed with a constant time-window
for the LS estimation of T = 8 and the number random perturbations was
set to be M = 100. To solve the underlying least-squares optimization
problem (5.12), we utilize only a 2rd order monomial estimator with
L1 = 2 and L2 = 2 (with overall size of L = 5).

(a) Initial positions of the robots & desired
trajectory to follow

(b) The desired formation is acquired by
the robots

(c) The robots adjust their positions to
maintain the desired formation during the
course of the experiment

(d) Final positions of the robots along with
the evolution of their trajectories

Figure 5.10. Time-varying formation control for a swarm of 5 robots

Figure 5.10 illustrates the performance of the proposed algorithm in
this simulation scenario. Sub-figure 5.10(a) presents the initial positions of
the 5 robots (colored circles), the corresponding centroid (marked with ‘x’)
and the desired trajectory of the centroid (grey dashed line). Sub-figure
5.10(b) focuses on the actions that each robot made in order to take place
for the upcoming movement. Sub-figure 5.10(c) and 5.10(c) present an
intermediate and the final positions of the robots, respectively. The robots
successfully completed the assigned mission by keeping the trajectory of
the centroid (black line) close to the desired one and, at the same time,
retaining the desired formation.

Although the proposed algorithm cannot reach the performance of a
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dedicated approach [105, Fig. 3], due to the fact it learns the time-varying
cost function (5.26) from scratch, it provides several advantages. At first,
it can straightforwardly incorporate operational constraints (e.g. limited
communications, obstacle avoidance functionality, etc.). Secondly and
most importantly, the proposed approach does not utilize the desired
(user-defined) centroid (σ1,d) or formation (σ2,d) inside its decision making
process, but only a cost function measurement per different configuration.
Overall, the universality of the proposed algorithm allows the realization
of any other evaluation scheme (5.24)-(5.26), without the need to explicitly
redesign the whole navigation scheme.

5.7 Persistent coverage inside unknown environment

In the final application, we focus on the problem of persistent coverage an
area of interest with a swarm of robots. In this application, it is assumed
that the operational robots are equipped with the appropriate sensors that
are able to cover a portion of the environment. The aim of persistent
coverage is to maintain a desired level of coverage over an environment
with a time-decaying coverage. The problem along with a specifically
designed algorithm has been proposed in [49]. The authors also established
a well-defined, heuristic mechanism to on-line share the coverage evolution
between the robots in distributed way.

Although the results are remarkable, the proposed decision making
mechanism in [49] utilizes a model that accurately predicts the improvement
in the coverage level due to the robots movement [49, equations (10),(18)-
(21)]. In real-world applications, the above assumption does not always
hold, as the increase in coverage level (i) is usually corrupted by non-linear
noise, (ii) can be affected by environmental specific characteristics, such as
local morphology, obstacles, other robots’ positions, etc., (iii) may follow
a time-varying model (e.g. coverage level deteriorates over time). To
circumvent these difficulties, we propose a variation of the above problem,
where the coverage increase, due to robots’ movement, cannot be calculated
before the action. The actual information about the exact covered area is
only available after the execution of each corresponding action through the
robot’s measurements. The above formulation is not only more realistic, as
it does not require an exact model of the environment or robot’s coverage
capabilities, but also more generic as it does not need to redesign the
approach when robots with different or unknown coverage models are
deployed.
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5.7.1 Problem definition

It is assumed that the operational area is a bounded Q ⊂ R2, which a team
of robots has to persistently cover. The decision variables (5.1) represent
the collective vector of all the robots’ positions, i.e. x =

[
xτ1, . . . , xτN

]τ,
where xi ∈ Q.

Inside the environment there are several positions q ∈ O ⊂ Q that
cannot be traversed by the robots and additionally the presence of these
obstacles affects each robot’s coverage distribution. Although the exact
positions of the obstacles are generally unknown, we assume that the robots
are able to sense their presence when they are at close proximity. The
above assumption is in line with the most commercial robots which are also
equipped with proximity sensors to avoid collisions [121–123]. Thus, each
robot’s new candidate position xcandi should verify the following constraint
[see equation (5.6) of general Problem Formulation]:

min
q∈O

(∥∥∥xcandi − q
∥∥∥) > b (5.27)

where b denotes the safety distance. At each timestamp k, the overall
coverage increase is given by y(q,k) =

∑
i∈{1,...,N} yi(q,k), ∀q ∈ Q, where

yi(q,k) =



γi(q, xi) if ‖xi − q‖ 6 rcovi &

there is line-of-sight

between xi and q

0 otherwise

(5.28)

and γi(q, xi) denotes a non-linear function that models how the coverage
level evolves in the area around the i-th robot’s position. Please note, that
coverage distribution model γi(q, xi) may be different and arbitrary defined
for each robot, as it depicts the functionality of its on-board sensors.

The coverage of the operational area can be modeled by a time-varying
field and, in general, admits the following form:

Z(q,k) = d(q)Z(q,k− 1) + y(q,k), ∀q ∈ Q (5.29)

In other words, the coverage level decreases to a constant decay gain
d(q), with 0 < d(q) < 1, and increases according to the y(q,k). The
objective of the multi-robot team is to maintain a desired coverage level,
Z∗(q) > 0, ∀q ∈ Q.
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Having the above formulation in mind, we define the quadratic coverage
error the robot team has to minimize:

J(k) =
∫
Q
(Z∗(q) −Z(q,k))2 dq (5.30)

5.7.2 Simulation results

All simulations were performed in a rectangle environment consisting of
100× 150 units, with uniformly distributed decay rate d(q) = 0.995, ∀q ∈
Q. The desired coverage level is Z∗(q) = 100, ∀q ∈ Q. The number of
robots was N = 6, while their maximum motion is umax = 5. The increase
in open-space coverage, caused by the robots’ movements, can be simulated
by:

γi(q,k) =
P(
rcovi

)2 (‖xi − q‖− rcovi )2 (5.31)

The maximum value is set to P = 17 and the coverage radius is set to
rcovi = 10 units. Please note that, this equation is not utilized during the
decision-making process, but it is only employed to simulate the increase in
the area coverage, due to the robot’s movement. Finally the experiments’
duration is set to kmax = 900 timestamps.

To adapt the parameters of the proposed algorithm to the current ap-
plication, we have to take into consideration that the navigation algorithm
has to rapidly change its behavior due to the time-varying nature of the
cost function. Therefore, the time-window for the least-squares estimation
was only T = 5 timestamps and the number of perturbation was M = 100
candidates. To solve the underlying least-squares optimization problem
(5.12) with such a reduced historical values, we utilize only a 2rd order
monomial estimator with L1 = 2 and L2 = 2 (with overall size of L = 5).
Finally, following also the problem definition in [49, Section II.], we utilize
α = 1 to update the robot’s positions.

Obstacle-free environment

In the first simulation scenario, we deploy the swarm of robots in an
obstacle free environment. An indicative simulation run of this scenario is
summarized in figure 5.11. Figures 5.11(a)-5.11(c) present the evolution
of the coverage across the environment Q, for 3 different timestamps.
Additionally, figures 5.11(d), 5.11(e) and 5.11(f) depict the evolution of
the average coverage level, the corresponding standard deviation and the
quadratic coverage error for the course of the experiment, respectively.
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(a) Timestamp 1 (b) Timestamp 200 (c) Timestamp 400

(d) Average coverage level (e) Standard deviation of cov-
erage level

(f) Cost function - quadratic
coverage error

Figure 5.11. Obstacle-free scenario: Figures (a)-(c) illustrate the coverage level for 3
different timestamps and figures (d)-(f) depict the corresponding performance indices

After the experiment execution, the average coverage level in all the
operational environment Q was 97 with a standard deviation of 21.2 and
the corresponding quadratic coverage error was 6.9× 106.

It should be highlighted that, the objective (5.30) is a time-varying
function with high rate of change, i.e. the evaluation of (5.30) may
result in significantly different scores for the same robots positions, even
for very close timestamps. However, the proposed scheme is able to
appropriately tackle the above problem, by constantly learning these cost
function variations with respect to the robots’ positions.

Although the proposed algorithm presents an equivalent performance
compared to the dedicated one [49, Section VI.], if the problem is defined as
in this scenario and the coverage increase due to the robots movement can
be accurately predicted, a dedicated approach should be preferred to avoid
the extra time due to learning [equations (5.10),(5.12) of the proposed
algorithm]. However, the proposed approach has several advantages when
it is deployed in a real-world environment, where the evaluation of the
coverage increase cannot be performed beforehand. Such a scenario is
presented in the following paragraph.

Unknown cluttered environment

In the final simulation scenario, we investigate the performance of the
proposed approach for the persistent coverage task, when it is evaluated
on an unknown environment with non-convex obstacles. The obstacles
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(a) Timestamp 1 (b) Timestamp 200 (c) Timestamp 400

(d) Average coverage level (e) Standard deviation of cov-
erage level

(f) Cost function - quadratic
coverage error

Figure 5.12. Scenario in unknown environment with non-convex obstacles: Figures
(a)-(c) illustrate the coverage level for 3 different timestamps and figures (d)-(f) depict
the corresponding performance indices

have been created randomly and don’t hold any kind of pattern. The
minimum distance between the obstacles and any robot (5.27) has been
set to b = 2.5.

Again, an illustrative example is presented in figure 5.12. Figures
5.12(a), 5.12(b), 5.12(c) present the evolution of the of the coverage across
the environment Q, for 3 different timestamps. Figures 5.12(d), 5.12(e) and
5.12(f) depict the evolution of the average coverage level, the corresponding
standard deviation and the quadratic coverage error (5.30), respectively.

The cost function (5.30) does not need any adaptation to this scenario
as the coverage values Z(q) that correspond to obstructed locations q ∈ O
will remain zero, independently of their distance from any robot. In
other words, the calculation of (5.30) does not need the information of
the unknown obstacles, as the robots would never send coverage updates
(5.28) about the obstacles’ positions. However, to construct comparable
metrics with the previous scenario, we exclude the values that correspond
to obstacles’ locations from the calculation of the average coverage level
(figure 5.12(d)). After the experiment execution, the average coverage level
inside Q was 90.7 with a standard deviation of 32.1 and the corresponding
quadratic coverage error was 6.6× 106.

Comparing the outcomes of two scenarios side by side, we can draw the
following observations:

• In the cluttered environment scenario, the robots can more easily
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get “trapped” in overcovered areas, resulting in a higher standard
deviation. In other words, when a robot detects (implicitly from
the changes in its corresponding cost function) that its position
deteriorates the coverage level, may have only a small sub-set of
possible new positions.

• During the course of the experiment in the cluttered environment,
the obstacles “blocked” a portion of the robots’ coverage capabilities.
Therefore, for the cluttered environment scenario, the robots achieved
a smaller average coverage level (excluding the obstacles positions).

5.8 Conclusions

A distributed methodology for dealing multi-robot problems, where the
mission objectives can be translated to an optimization of a cost function,
has been proposed. Contrary to the majority of the multi-robot approaches,
where the objectives are accomplished in cost function optimization scheme,
the proposed approach is designed for multi-robot problems where the a
priori calculation of the cost function is not feasible. In a nutshell, the
proposed approach has the following key advantages:

• it does not require any knowledge of the dynamics of the overall
system;

• it can incorporate any kind of operational constraint or physical
limitation;

• it shares the same convergence characteristics as those of block coor-
dinate descent algorithms;

• it has fault tolerant characteristics;

• it can appropriately tackle time-varying cost functions;

• and it can be realized in embedded systems with limited power
resources.

Conclusively, we expect that many interesting tasks in mobile robotics
can be approached by the proposed scheme. This is basically due to the
fact that the proposed approach, instead of explicitly solving a particular
problem, which requires prior knowledge of the system dynamics, learns –
from the real-time measurements – exactly the features of the system which
affects the user-defined objectives. Furthermore, the proposed approach
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can be appealing in many real-life applications due to its fault-tolerant
characteristics, without an explicitly designed fault-detection mechanism.
All the above issues are considered of paramount importance in multi-robot
applications.

As future directions, we are interested in performing an extensive set
of experiments, ideally with a large number of robots (e.g. a large swarm
of femtosatellites (100-gram-class spacecraft) [124]). In particular, in such
a set-up, it is impossible to explicitly program each and every robot to
perform a sub-task, therefore the goal will be to achieve an abstract set of
objectives, which are defined in form of cost function optimization. The
idea behind the above formulation is, by excluding the intermediate steps
from the design process, we enrich the multi-robot decision making scheme
with autonomy, regarding the “type” of converged solutions.
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In this Thesis we have addressed the problem of navigating a team of
robots so as to achieve several team objectives. This is undoubtedly a quite
important task with several real-word applications, an example of which
has been demonstrated in section 4.6. Current top performing approaches,
either attack a simplified version of the original problem or rely on heavy
simulations to tune a parametrized decision-making mechanism.

The contributions of this Thesis can be summarized as follows:

• A new algorithm for the problem of multi-Robot Coverage Path
Planning (mCPP) is proposed, which is based on spanning tree
coverage (STC) framework. First, the available space of is divided
into distinct classes, as many as the number of robots. In heart of the
proposed approach lies the DARP methodology, a search algorithm,
which finds the optimal cells assignment for each robot utilizing a
cyclic coordinate descent approach by taking into account both the
robots initial positions and the obstacles formation. The outcome of
the DARP algorithm constitutes a set of exclusive operation areas for
each mobile robot. Second, these well-defined regions, are forwarded
to each robot’s planner, where by employing STC algorithm, the
exact route that covers the assigned area is calculated. The overall
navigation scheme achieves to traverse the complete operation area,

141
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without backtracking in already visited areas, starting from the exact
initial robot positions. To the best of our knowledge, no other method
from the literature exhibits all the aforementioned features at the
same time.

• A novel method for dealing the problem of exploring an unknown
area using multi-robot teams under environmental and communi-
cation constraints, while simultaneously building a detailed map of
the environment has been proposed. Based on this approach, we
are transforming a standard trajectory generation problem so as to
optimize a transformed version of trajectory generation efficiency, em-
ploying CAO algorithm. The methodology proposed is independent
of requirements regarding operational characteristics of the robots
like communication range and type of sensors. Additionally, the
proposed scheme, in relation to the vast majority of the optimal/dy-
namic programming approaches, takes into account the non-linear
characteristics of the robots’ sensors and the fact that the operation
area is unknown. In a nutshell, the proposed methodology aims to
bridge the gap between the state-of-the-art algorithms and the actual
practices, by successfully navigating the robots through environments,
where the objective/reward function cannot be calculated a-priori,
due to the aforementioned reasons. The applicability and adaptability
of our approach in realistic scenarios has been demonstrated through
simulated and real-life underwater sea-floor mapping experiments in
the port of Porto, Portugal using a team of AUVs.

• Building on the previously described CAO methodology, we pro-
pose a general-purpose, distributed methodology for dealing multi-
robot problems, where the mission objectives can be translated to
an optimization of a cost function. Contrary to the majority of the
multi-robot approaches, where the objectives are accomplished in
cost function optimization scheme, the proposed approach is designed
for multi-robot problems where the a priori calculation of the cost
function is not feasible. In a nutshell, the proposed approach has the
following key advantages:

– it does not require any knowledge of the dynamics of the overall
system;

– it can incorporate any kind of operational constraint or physical
limitation;
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– it shares the same convergence characteristics as those of block
coordinate descent algorithms;

– it has fault tolerant characteristics;
– it can appropriately tackle time-varying cost functions;
– and it can be realized in embedded systems with limited power

resources.

The proposed algorithm is evaluated in four heterogeneous simulation
set-ups under multiple scenarios, against both general purpose (cen-
tralized) and specifically-tailored to the problem in hand, algorithms.

6.1 Future directions

Several avenues of exploration are left open for future work, for the case of
offline multi-robot Coverage Path Planning problem (DARP algorithm).
One direction could be the relaxing of one or more constraints of Definition
3. For instance, in expense of the non-backtracking attribute, the produced
paths can be constructed to be convex only (less messy) or/and the
shape of the STC can be appropriately modified in order of the turns in
robots’ paths to be minimized. In addition, we intend to include in our
methodology another stage, which will be in charge for the automatic
recognition/detection of non-optimal cases, in order to directly apply the
appropriate, predefined solution scheme. Finally, in our future plans is the
development of an online version of DARP algorithm, so as to be able to
operate inside completely unknown terrains.

The proposed approach, for the case of online trajectory generation,
achieves state-of-the-art performance in the multiple evaluated set-ups.
Naturally, further improvements are possible. Usually, in multi-robot
frameworks, prior information about the objectives and mission are avail-
able before the actual deployment of the robots. The exploitation of this
information can provide an initial plan for the operational robots. The
advantages of such prior step could be twofold. First, the robots will be
ready to accomplish the desirable objectives from the early stages of the
mission. Second, incorporating the offline knowledge about the mission and
objectives may lead to better solutions, bypassing several local minima.

6.2 Publications from this thesis
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A DARP - Set-ups where an optimal
space division does not exist

The problem formulation, as it is defined in section 3.2, it may contain
cases where the given placement of the obstacles or the robots blocks the
access to one or more cells. Although these cases are considered out of the
scope of the paper, and excluded from the considered scenarios, here in
the appendix we categorize them and propose some preliminary solutions
in-line with the proposed approach.

The first class consists of cases where an optimal solution to the mCPP
problem cannot be attained, due to the initial placements of the robots
(sub-figure A.1(a)). In these cases, one could spend some preparatory
steps in order to rearrange the robots, so as to transform the problem
into a solvable scenario (by the proposed approach DARP+STC). This
rearrangement is not trivial and is forming another optimization problem,
where now the objective is to find the minimum path to travel in order

(a) The robots initial place-
ment limits some robots op-
eration plans

(b) The obstacles and robots
placement forms two exclusive
sub-areas

(c) The obstacles do not allow
the fully coverage of the area
of interest

Figure A.1. Cases where the robots and/or obstacles arrangement, do not allow the
acquisition of the optimal solution
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to render the problem tractable. Alternatively, one could apply a relaxed
version of DARP algorithm by removing its non-backtracking property
(Definition 3, condition 1).

Another case, where the coverage task cannot be equally separated
among the available robots, might be occurred, where one or more robots
are trapped inside non-avoided, bounded sub-areas (sub-figure A.1(b)). In
these cases, one could straightforwardly apply the proposed approach, as
many times as the number of bounded zones, and the optimal attainable
solutions is again guaranteed. Apparently, in this case it is highly unlikely
to end up having a balanced path length across all the robots’ planners.
In fact, now the produced path lengths are highly dependent on the size of
the corresponding bounded area. However, different robots that lie in same
sub-area should have almost the same workload (Definition 3, condition 3).

Moreover, there are non-recoverable cases, where one or more sub-areas
cannot be reached (sub-figure A.1(c)). In such situations the proposed
algorithm can be applied on the remaining terrain, ensuring the optimal
robots’ path construction. Finally, it might be occurred a combination
of the above scenarios and then one could apply a hybrid version of the
aforementioned solutions.

Over and above, it should be highlighted that, in all these cases the
fact that the proposed approach is not able to deliver an optimal set of
paths, is not some kind of weakness, but it is due to the fact that the
optimal solution, at least with the properties as defined in Definition 3,
does not exist.



B Multi-robot exploration based on the
EKF error covariance matrix

The last few years, special attention have been paid in developing tech-
niques for active exploration (active SLAM), see e.g., [30, 125,126] and the
references therein: using the information received so far, the robot next
positions are designed so they optimize the mapping information of the
SLAM algorithm. One possible way to attack such a problem is as follows:
check all feasible next robot positions (e.g., all next robot positions that
do not violate obstacle avoidance, maximum speed, communication, etc
constraints) and find the ones that optimize some information metric that
corresponds to the accuracy of the SLAM algorithm; then, move to the
positions that optimize this information metric, and so on. Different types
of such information metrics have been proposed, with the most popular
being the trace of the EKF error covariance matrix, see e.g., [125, 126]. In
such a case the robots are moving to the next positions that minimize the
average (expected) EKF estimation error.

There two big issues with the above mentioned approach: the first is
scalability, since it is computationally not feasible to check all possible
combinations of next robots positions (this is practically infeasible even
in the single robot case). There are, of course, many different approaches
that relax the computational requirement of checking all possible next
positions at the expense of sacrificing efficiency. However, even in the
unrealistic case where infinite computing power would be available, as
these algorithms are based on EKF – which, in turn, is based on linearizing
the nonlinear multi-robot/sensor dynamics – the presence of nonlinear
constraints (e.g., for obstacle avoidance or for not leaving a pre-specified
area) may be destructive to the efficiency of the overall active exploration
mission. The results of such a case are depicted in Figure B.1: three robots
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Figure B.1. Autonomous exploration by moving towards minimizing the trace of EKF
error covariance matrix: 3 robots, 30 landmarks, by assuming unlimited visibility, perfect
localization and infinite computing power. The estimation error starts diverging as soon
as the robots hit the boundary of the cube [−1,+1]3 the robots are constrained to remain
within.

have been deployed for estimating the location of 30 static landmarks and
their trajectories are designed so they minimize the trace of the EKF error
covariance matrix, while they avoid obstacles (landmarks) and they remain
within the cube [−1,+1]3. Although, in the time-interval [0, 79] the overall
algorithm behaves quite efficiently, it starts diverging as soon as the robots
“hit” the boundaries of the area they have to remain within.
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