
  

 

Abstract— Over the last years, an intensified interest has 

been shown in many studies for precision agriculture. 

Unmanned Aircraft Systems (UASs) are capable of solving a 

plethora of surveying tasks due to their flexibility, 

independence and customization. The incorporation of UASs 

remote sensing in precision agriculture enhances the abilities of 

crop mapping, management and identification through 

vegetation indices. In addition to this, different image analysis 

and computer vision processes were adopted trying to facilitate 

field operations in cooperation with human intervention to 

enhance the overall performance. In this paper, we present a 

practically oriented application on vineyards towards an 

integrated low-cost system which utilizes Spiral-STC (Spanning 

Tree Coverage) algorithm as a Coverage Path Planning (CPP) 

method. Based on the resulted flight campaign, UAV images 

were collected, and the incorporated image analysis processes 

finally extract vegetation knowledge. Also, geo referenced 

orthophotos and computer vision applications complete the 

generated oversight of the field.  These supportive tools provide 

farmers with useful information (crop health indicators, 

weather predictions) letting them extrapolate knowledge and 

identify crop irregularities. 

I. INTRODUCTION 

Unmanned Aircraft Systems (UASs) also referred to as 
Unmanned Aerial Vehicles (UAVs) and drones, present a 
continuous expanding key role in different applications [1]. 
Their adoption in the field of agriculture bodes a promising 
factor and probably a well-established core asset-component 
in the future with multiple benefits. Over the last decades, a 
variety of applications are directly connected with precision 
agriculture as a result of many technological advances and 
engineering innovations providing economic and 
environmental benefits [2], [3]. These technologies 
incorporate sensors (soil, crop, field, yield etc), controls 
(automatic guidance systems, robotic harvesting systems, 
networked systems etc) and information management 
systems (GIS packages and data interchange standardization). 
In addition to this, the miniaturization of individual 
components such as microprocessors, sensors, batteries, 
communication devices as well as their cost reduction led to 
the introduction of UAS as remote sensing platforms 
gathering extensive amounts of raw data [4].  
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UAV remote sensing platforms present strong benefits as 
compared with traditional piloted aircrafts and satellites due 
to their increased flexibility and easy deployment satisfying 
requirements of rapid monitoring, assessment and mapping in 
natural resources [5]. They have established and preferred in 
comparison with their predecessors as they provide much 
safer and cost-efficient ways for data acquisition with better 
abilities of acquiring detailed images at different lighting 
conditions and flight altitudes. Generally, UAV-based image 
sensing as an alternative geo-data acquisition method exhibits 
a well-accepted trade-off between flexibility, high resolution, 
low-cost and limited flight time (low battery lifetime), small 
coverage. A comparative study [6] resulted that with respect 
to aircraft and satellite, UAVs can operate closer to the target 
and their flexibility on scheduling, acquisition on cloud cover 
conditions, resolution and precision were identified-classified 
as optimal. On the contrary, the attributes associated with the 
coverage range, flight endurance and mosaicking and 
geocoding effort were characterized as poor. 

A complete UAV remote sensing system consists 
basically of: 1) sensors, 2) auto pilot system, 3) inertial 
measurement unit (IMU), 4) global positioning system 
(GPS),  5) data link and 6) ground station. These core 
components are used for data acquisition, control of the 
aircraft, as attitude measurement and heading reference 
system for aircraft maneuvering, navigation, data transfer and 
mission monitoring/information interaction components 
respectively. Acquisition sensors may vary between an 
extended list of RGB, multispectral and hyperspectral 
cameras, Light Detection and Ranging equipment (LiDAR) 
etc. However, there is a continuous increased interest for 
low-cost visual band cameras in comparison with LiDAR 
systems, as Structure from Motion (SfM) techniques provide 
the ability to create 3D reconstructions from 2D images and 
extract useful profile information. The construction processes 
of 2D orthomosaics and 3D canopy surface models are of 
particular importance in accurate crop mapping and canopy 
detection. 

Useful information for the under-investigation areas can 
be extracted also from vegetation indices (VI). This is a valid 
way to measure the overall amount and quality of 
photosynthetic material and present farmers and 
agriculturalists with the field’s profile.  Indicative 
applications associated with agricultural operations/tasks 
include chlorophyll content mapping of corn [7], rice growth 
and grain yield estimation [8], discrimination of vegetation in 
wheat fields [9], detecting vegetation rows in vineyards [10]. 
Vineyards especially are one of the main domains of 
agriculture in Greece. Moreover, Greece is one of the major 
country producers of wine and wine grapes (fresh, table,  

Towards an Integrated Low-Cost Agricultural Monitoring System 

with Unmanned Aircraft System 

Georgios D. Karatzinis, Savvas D. Apostolidis, Athanasios Ch. Kapoutsis, Liza Panagiotopoulou, 

Yiannis S. Boutalis, Elias B. Kosmatopoulos 

2020 International Conference on Unmanned Aircraft Systems (ICUAS)
Athens, Greece. September 1-4, 2020

978-1-7281-4277-7/20/$31.00 ©2020 IEEE 1131



  

 

Figure 1.  Evolution of grapes (left) and wine (right) production of Greece 

for the period 1995-2018. 

dried) with a total vine area of 106kha (2018 register). The 
wine improvement in terms of quantity and quality is very 
important for the development of the primary agriculture 
sector and the contribution to the national economy.  

However, according to the 2019 statistical report 
published by the International Organisation of Vine and Wine 
[11], the production volume of Greece for the year 2018 
evaluated at 2.2mhl presenting an overall decrease of 15% 
compared with the 2017 produced volume, while the total 
vineyard surface area the last 10 years is quite similar. In 
contrast with the major wine producers inside EU, Greece 
records a lower than its 5-year average (-12.6%) and a 
disappointing historical low -35% decline with respect to the 
24-year average as presented in Fig. 1. The reported results 
show the existence of indubitably needs of viniculture in 
Greece and define the clear future requirements of key 
actions. The significance of the above results rises even more 
for canopy regions covered with Protected Designation of 
Origin (PDO) and Protected Geographical Indication (PGI) 
which are strictly connected with their geographical origin. 
By applying autonomous precision operations, we can 
mitigate this problem by improving the stability and 
sustainability of production with multiple positive benefits 
and further enhancements. In addition to the improvements in 
the management and efficiency, the establishment of such 
methodologies will significantly reduce the environmental 
footprint of extensive agriculture activities. Therefore, 
vineyard mapping in combination with utilities such as to 
access vegetation state, monitor the canopy vigour and get 
updates about possible erosion or flood, define decisive 
factor of future enhancement. The condition factors in 
conjunction with computer vision processes are getting more 
essential in crop monitoring. These give an increased 
meaning to proactive actions on stressed plants and in fact 
alleviate the smooth farm operations and improve 
sustainability. The overall enhancement rises in terms of 
quantity and quality of production, energy saving, manpower 
reduction, crop management and growth optimization and 
costs reduction. 

Due to the defined needs and the aforementioned possible 
benefits, the current paper aims at an efficient threefold 
embrace of a Spiral Spanning Tree coverage algorithm, 
traditional condition factors and computer vision processes 
incorporated in a uniform way. The material of the paper is 
organized as follows: In Section II a brief literature review 
and the general campaign workflow are presented. Section III 
analyses the path planning coverage requirements and the 
adopted method. Section IV describes the off-line post-
processing image analysis and the produced results. Finally, 

Section V outlines the conclusions and future remarks for 
upcoming improvements. 

II. RELATED WORK AND MATERIAL DESCRIPTION 

An identified frontline goal in precision agriculture is the 
reliable incorporation of UAV and UGV systems in 
continuous management and monitoring processes. This way 
a recurrent set of crop profile information provides useful 
effort for plant health monitoring guiding to proper actions 
for improving or sustaining the health level. At the same 
time, this is essential for planning regular agricultural works 
such as seeding, pruning, fertilizing, spraying and harvesting. 

A. Related Work 

In order to achieve these benefits, three main 
categories/scenarios according to the nature of robots, 
characterize the implementations related to existing literature. 
The case studies concern i) only UAV-based systems, ii) 
UGV alone and iii) UAV+UGV working symbiotically and 
synergistically. A dedicated method was developed in [12] to 
estimate several vineyard characteristics using the RGB 
method imagery acquired from an unmanned aerial vehicle 
(UAV) platform. The included features were row orientation, 
height, width and row spacing, as well as canopy cover 
fraction and percentage of missing row segments. Other 
works incorporate multispectral images and vegetation 
indices for cultivation analysis [13], [14]. The use of both 
multispectral and thermal cameras onboard of an UAV led to 
assessment of vineyard water status as presented in [15]. In 
fact, high correlations were found between indices based on 
thermal and on multispectral images with vineyard water 
status. An UAV could be used to assess vine water status and 
to map within vineyard variability, which could be useful for 
irrigation practices.  

In the case of UGV alone systems, many research studies 
are dedicated in automatic grape detection and precision 
picking trying to distinguish fruits from background. Luo et 
al. [16] used RGB images to extract multiple effective color 
components from YCbCr, HSI and L*a*b transformation. 
The effective color components were extracted based on a 
thresholding methodology to construct weak classification 
models. A strong classifier performing grape detection was 
constructed using the AdaBoost algorithm, by assembling the 
weak classifiers. Finally, morphological filtering and 
morphological region filling procedures were applied to 
eliminate the remaining noise and fill the holes in the image 
respectively and the enclosing rectangle method completes 
the framework by marking the clusters. Other works try 
combining color and texturing features to enhance the overall 
fruit detection procedure. A work which follows this 
philosophy has been presented in [17], accelerating fruit 
detection by isolating and counting bunches in grapes. 
Experiments performed on two varieties of red grapes, Shiraz 
and Cabernet Sauvignon, resulting a detection accuracy of 
88%. An algorithm for grape clustering and foliage detection 
and localization for autonomous selective vineyard sprayer 
was proposed in [18].   

Instead of using the UAV or UGV system alone, a 
scenario in which the two types of robots form a symbiotic 
system was proposed in [19]. The UAV can land on the 
UGV, and the UGV transports the UAV between deployment 
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locations. In the same work, the authors show how to plan the 
motion of this symbiotic UAV+UGV system on a metric 
graph, which allows them to apply orienteering algorithms. 
An interesting work of aerial-ground collaborative 3D 
mapping is presented in [20]. The problem is analyzed in a 
cooperative UAV+UGV multimodal environment 
representation where maps built from both robots and the 
data association problem is casted as a large displacement 
dense optical flow estimation. 

B. UAV Campaigns and Material 

The field images were acquired by a light-weight 
quadcopter DJI Phantom 4 Pro and 3DR Solo in two distinct 
scenarios for cotton and vineyard monitoring. Also, the total 
area of the under-investigation fields is approximately 4.9ha 
and 1.25ha respectively. The first study area was covered by 
the DJI Phantom R Pro mounted camera (FC6310), while for 
the second study the Parrot Sequoia multispectral camera was 
used. The cotton flight campaign was managed mainly for 
evaluating the path planning coverage procedure that will be 
described in Section III. Useful flight information details are 
presented in Table I including camera specifications, flight 
attributes, overlap percentage and GSD (ground sampling 
distance). Having substantial forward and side overlap 
alleviates procedures of stitching acquired images and as a 
result to obtain satisfactory reconstruction results. The above 
parameters may vary according to the goal of the flight 
campaign. Indicatively, parameters such as flight altitude, 
overlap and GSD are highly dependent based on the goal of 
the flight. A detailed 3D model generation requires small 
distance between two consecutive pixel centers measured on 
the ground, which means low flight altitude and high overlap. 
In contrast, applications aimed at monitoring and 
management of crops can be accomplished at lower 
resolution from a higher and wider point of view. 

Following the above flight parameters, the general 
workflow scheme of UAV-based remote sensing system is 
utilized in Fig. 2. Three base phases constitute the flight 
preparation, planning and post-processing subsystems and 
complete the pipeline of the system. Firstly, devices and 
general parameters are specified. Proper specifications of 
area of interest, camera information and longitudinal and 
transversal overlap are required for generating flight 
planning. The last subsystem is responsible for off-line data 
post- processing and visualization purposes. The exported 

TABLE I.  FLIGHT CAMPAIGN INFORMATION 

Species Cotton Vineyard 

Flight Date 12/9/2019 29/7/2019 

Growth Stage 
Boll 

opening 
Veraison and fruit 

maturation 

Flight Height (m) 50 80 

Speed (m/s) 3 4.5 

Overlap  (%) 
Side/Forward 

80/80 80/85 

Image Size (pixels) 
5472x3078 

(RGB) 
4608x3456 

(RGB) 
1280x960 

(Monochrome) 

Sensor size (mm) 13.2x8.8 6.17x4.63 4.8x3.6 

GSD (cm/pix) 1.37 2.2 7.5 

 

Figure 2.  General workflow scheme of UAV-based remote sensing 
system. 

results are capable for providing crop management and 

monitoring properties. This is achieved through valuable 

vegetation indices and processes of image segmentation. 

Ground control station takes part during mission planning as 

well during flight as a platform for specifying parameters, 

tele-control and real-time observation. 

III. PATH PLANNING COVERAGE PROCEDURE 

The coverage path planning (CPP) problem is the task of 
determining a path that passes over all points of an area or 
volume of interest while avoiding obstacles. A 
comprehensive survey has investigated the existing coverage 
path planning methods in 2D environments [21]. 

A. Requirements 

To properly design the path planning algorithm, at first, 
we should identify the key aspects that determine the 
performance of a coverage task. Taking into consideration 
that usually the fields do not have a standard geometry, any 
adopted path planning solution should be able to design 
UAV’s trajectories that completely cover arbitrary, non-
convex polygons. On top of that, in many fields there are 
some sub-regions, where either a coverage is not useful (e.g. 
different variety of plants) or it is not safe to perform a flight 
above them (e.g. personnel or farming equipment is placed 
in this area). Therefore, the path planning methodology 
should be able to cope with such no-fly zones and exclude 
them from the produced trajectory. 

Additionally, the scan should be completed in the 
minimum possible time. This minimum possible time 
constraint, at first, allows the operator to minimize the 
waiting time on the field, which can be a really tedious 
procedure. However, the most important reason, for the 
optimization with the respect to the coverage time, is the 
optimal utilization of the UAV’s battery. The number one 
bottleneck for almost all the UAV’s operation is the battery 
time [22], therefore an improved – in terms of coverage time 
– plan can play a crucial role in the final area of coverage 
with the existing infrastructure. It is worth highlighting that 
the improvements that come with the acquisition of more 
UAVs, spare batteries or docking/charging stations can be 
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significantly amplified, if an optimal path planning 
algorithm is also adopted. Overall, the trajectory of the UAV 
should i) completely cover the user-defined parts of field 
with the desired accuracy, ii) without backtracking in 
already visited areas, and iii) start the operation from its 
exact initial position, i.e. does not need any preparatory 
stage. 

B. Adopted Solution 

To accomplish the aforementioned features an algorithm 
based on the Spanning Tree Coverage (STC) methodology 
[23] was adopted. This solution is an O(n) algorithm, where 
n denotes the size of the field, capable of constructing the 
minimum path that covers the whole field, starting from any 
arbitrary point.  

The main steps of this procedure are outlined in figure 3. 
Fig. 3 (a) illustrates the first part of this algorithm, which is 
the discretization of the field into cells that have the size of 
the desired coverage accuracy. The no-fly areas of the field 
are represented with black cells. Fig. 3 (b) graphically 
illustrates the transition from cells to nodes, i.e. one node is 
placed for every 4 cells. The nodes that correspond to 
obstacles are discarded from the graph and in all nodes are 
added that edges that correspond to the Von Neumann 
neighborhood. At this stage (figure 3 (c)), we have converted 
the initial operational area into a fully connected graph. As 
next step, the number of edges in this graph is reduced, by 
applying a minimum spanning tree methodology (e.g.  

 

Figure 3.  Spanning Tree Coverage Algorithm – Key steps. 

            

Figure 4.  a) Flight path planning, b) horizontal velocity. 

Kruskal or Prim [24]). The reduced graph, which is 
illustrated in figure 3 (d), has the minimum number of edges 
that are necessary, so as the graph to remain fully connected. 
Figure 3 (e) graphically illustrates the previously calculated 
spanning tree on top of the original discretized area. The 
purpose of this illustration is to highlight that this minimum 
spanning tree serves as a “guide” for the UAV. 

Fig. 3 (f) presents the final path for the UAV that has 
been calculated by circumnavigating this spanning tree. The 
produced trajectory completely covers the desired parts of the 
field, without backtracking into previously covered regions, 
takes into consideration the initial position of the UAV and 
finally the return of the UAV to the starting position (usually 
the base) is part of the coverage plan itself. The 
aforementioned methodology was implemented and 
evaluated at a cotton field as mentioned in Section II. Fig. 4 
(a) illustrates the resulting path plan for a 4.9ha area, while 
Fig. 4 (b) presents the horizontal velocity variations during 
the flight from the take off point to the “End” state. The 
produced path is constituted by 14 lines including the 
distance covered from take-off point to the “Start” point. 
Green dots represent nodes between lines in which the UAV 
turns, in order to “catch” the route between waypoints. 

IV. DATA ANALYSIS AND IMAGE PROCESSING 

This section describes the off-line image processing 

implementation including actions of crop identification, 

health evaluation, segmentation and row detection. The 

under-investigation vineyard is depicted in Fig. 5. It consists 

of three different varieties (Α: Savvatiano, B: Malagousia, 

C: Assyrtiko). The captured overlapping RGB images, taken 

from an automatically generated path as described in the  
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Figure 5.  Vineyard study area, view from satellite. Three sub cultivated 

areas with different vineyard species.A: Savvatiano, B: Malagousia, C: 

Assyrtiko. D stands for the cultivated area that will be used in the next 

subsections.  

 

Figure 6.  Generated orthomosaic for the study area using the acquired 

RGB images. 

previous section, were used in order to generate the resulting 

panorama. Specialized procedure for creating orthophoto 

includes feature extraction; feature matching; mismatch 

removal; image blending and fusion. More specifically, the 

first step assumes SIFT features extracted from all images 

for detecting keypoints. Then, feature matching procedure 

finds most similar features between images finds the relation 

between images. Taking into consideration the matched 

feature vectors, RANSAC algorithm computes the 

homography between images. This way RANSAC selects 

inliers that are consistently related with a homography and 

finds a solution that has the best consensus with the data. 

After removing exterior points, image blending introduces 

an interpolation procedure in order to be ensured that the 

resulted image presents zero transition with respect to the 

source images. Fig. 6 illustrates the orthomosaic 

representation of the vineyard area as calculated by the 

aforementioned procedure.  

 

A. Spectral Indices and Image Segmentation 

Vegetation indices (VI) are widely used for evaluating 

vegetation areas in terms of quality and quantity as they 

utilize spectral information. The spectral response of the 

investigated surface is transformed into reliable and 

interpretable formulas that identify and discriminate plant 

biomass from soil and other exogenous to the vegetation 

elements. A variety of methods have been proposed in the 

literature using RGB and multispectral camera sensors. Also, 

hyperspectral sensors provide even more bands compared 

with multispectral, in the range of hundreds to thousands 

narrow bands. More narrow bands increase the level of 

spectral detail and the produced indices result in better 

correlation with crop photosynthetic activity. Broadband and 

narrowband VIs are suitable for precision agriculture 

procedures and they are distinguished based on the 

reflectance bands they use. Both VI categories present 

ability to estimate the green vegetation cover and the quality 

of the photosynthetic material. In general, narrowband 

indices may provide slightly better capabilities of identifying 

the vegetation biophysical parameters, mainly in areas with 

dense vegetation, as they present higher level of sensitivity 

[4]. 

 The incorporation of color-based indices allows humans 

to identify naturally the greenness part. The most known 

color based indices include i) Excess Green Index (ExG) 

[25], Green Leaf Index (GLI) [26], Normalized Green Red 

Difference Index (NGRDI) [27] calculated directly from 

RGB images, ii) using Hue-Saturation (HS) and Hue (H) 

color spaces [28] and iii) LAB colour space [29]. Excess 

Green Index is computed as follows: 

* * *2ExG G R B    (1) 

where the chromatic coordinates R
*
, G

*
, B

*
 are: 

* * *, ,
R G B

R G B
R G B R G B R G B

  
     

 (2) 

where R, G and B are the normalized values in the range    

[0, 1] and these coordinates can be obtained from: 

, ,c c c

m m m

R G B
R G B

R G B
    (3) 

with Rc, Gc, Bc are the actual pixel values and Rm, Gm, Bm are 

the maximum values and equal with 255. 

  Normalized Difference Vegetation Index (NDVI) [30] 

has claimed a dominant role in remote sensing using the near 

infrared spectrum. This index highlights the vegetative status 

and the existing crop biomass with high accuracy from 

multispectral and hyperspectral remotely sensed images. 

This is because plants emit part of the absorbed solar 

radiation in the near infrared region. In other words, the 

signature of the vegetation reflectance is reflected in the 

near-infrared (NIR) and the vegetation absorption in the red 

band. Therefore, NDVI is computed from: 

NIR R
NDVI

NIR R





 (4) 

NDVI values are limited in the interval [-1,1]. The NDVI 
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range is unfolded in agronomic values revealing the surface 

type. A practical classification of these values is: i) values 

from -1 to 0 indicate generally water, snow or cloud 

existence, ii) values between 0 - 0.2 indicate soil, barren land 

and rocks while iii) values above 0.2 indicate vegetation 

with higher canopy cover as approaching 1. The vigor map 

of the vineyard using NDVI is presented in Fig. 7, while a 

zoomed view of the vineyard with soil excluded is depicted 

in Fig. 8. 

In order to identify vegetation and separate plants from 

the background we examine three methods for image 

segmentation purposes using the RGB images captured 

during flight. The first step is to use decorrelation stretching 

in order to enhance and exaggerate color differences. In the 

first two approaches we convert the images from the RGB 

color space into HSV and L*a*b* color spaces respectively. 

At the HSV color spectrum, Hue channel expresses the color 

component in degrees range: red from 0° to 60°, yellow 

from 61° to 120°, green from 121° to 180°, cyan from 181° 

to 240°, blue from 241° to 300° and finally magenta from 

301° to 360°. Saturation represents the amount of gray 

measured in percentage and the value channel represents the 

brightness or intensity of the color, from 0% (black) to 100% 

(brightest level). 

 

 

Figure 7.  Vigor map of the vineyard using NDVI. 

 

Figure 8.  Zoomed view of the vigor map without the existence of soil. 

In the CIE L*a*b* color space, L* component stands for 

the lightness value from 0 (dark) to 100 (bright) while a* 

and b* represent the color channels. The a* axis describes 

the green-red component with negative values referring to 

green and positive to red chromatic components. Similarly, 

b* axis values move towards blue to yellow color 

components from negative to positive. 

 The third approach is dedicated to the incorporation of 

ExG index, where the equations described in (1)-(3) were 

implemented in the resulted image after the decorrelation 

stretch. Then, the vegetation mask was obtained using 

appropriate threshold to transform the grayscale image into a 

binary image.  

A well-known technique for discrimination of two 

different classes is the automatic Otsu’s thresholding method 

[31]. In this case, Otsu thresholding is used to  extract plant 

objects and discriminate them from soil and other exogenous 

elements. Following the aforementioned procedures, vine 

canopy identification and segmentation was evaluated at the 

selected area D as noted in Fig. 5. The HSV thresholds for 

the selected segments were defined: Hmin=0.2, Hmax=0.45; 

Smin=0.6, Smax=1; Vmin=0.2, Vmax=1. For the case referred to 

L*a*b* color space: a*min=-100, a*max=-25; b*min=15, 

b*max=100. Fig. 9 utilizes the segmentation results for an 

indicative sub-area of D using the three aforementioned 

methods. The under-investigation area was annotated 

manually (see Fig. 9(a)). A visual interpretation of the result 

is represented in Fig. 9(b) for the selected area, while the  

 

 
(a) 

 
(b) 

Figure 9.  Segmentation results for the area D as noted in Fig. 5. (a) 

Ground truth manually segmented image. (b) Visual representation of vine 
canopy segmentation using three distinct methods. 
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TABLE II.  PERFORMANCE OF THE THREE ADOPTED METHODS IN 

TERMS OF ACCURACY 

 HSV Lab ExG 

Accuracy (%) 87.91 86.14 91.08 

 

overall accuracy of the three adopted methods is depicted in 

Table II. Our evaluation shows that the incorporation of 

Excess Green Index presents an enhanced result for 

detecting the vine canopy with better accuracy. 

B. Crop Row Detection 

Hough Transformation (HT) is a widely used method for 

crop lines detection. At the same time, it is an essential 

technique for identifying discontinuous lines within crops 

leading to significant results about possible poor vegetation 

growth or missing plants. Hough Transform    H(θ,ρ) was 

applied to the entire binary image for matching lines in the 

masked image. The vegetation mask has been resulted from 

Excess Green Index as described in previous subsection. 

Vegetation pixels were annotated with 1 and all the other 

information with 0. Each line is parameterized in terms of 

radius ρ which stands for the vertical distance from the 

origin of the image to that line and θ is the clock-wise 

inclination angle between the horizontal axis and the line ρ 

which is the line connecting the straight line with the origin 

as mentioned.  

The set of (radius-angle) constitute each parametrized line 

[32]: 

         cos sinx y      (5) 

The computed parameters ρ, θ are stored in a two 

dimensional accumulator array H(ρ,θ), which is a quantized 

space. Thus, each point (xi, yi) is transformed into a 

discretized (ρ, θ) curve and the accumulator cells which lie 

along this curve are incremented. Resulting peaks in the 

accumulator array represent strong evidence that a 

corresponding straight line exists in the image and the 

problem of crop line detection is deduced in local peak 

detection. Fig. 10 illustrates the detected crop rows and the 

Hough peaks of the previous oriented D area as in Fig. 9. 

Peaks are positioned around zero angle as expected and a 

couple of lines are over detected. It has to be mentioned that 

the point of view in Fig. 10 is the same as acquired from the 

UAV during flight campaign. 

V. CONCLUSION AND FUTURE WORK 

In this paper, techniques and algorithms that facilitate 

agricultural tasks were evaluated and the reported results 

provided information for extracting knowledge and 

identifying possible crop irregularities. The objective of this 

work’s content aimed at the incorporation of different 

operations in order to alleviate farmers’ and agriculturists’ 

work and enhance their crop management and monitoring 

properties. Moreover, the material of this work comprises 

the basis stage of exploration, as a practical vineyard based 

survey, towards an integrated UAV based low-cost 

agricultural monitoring system. The smooth incorporation of  

     

 

Figure 10.  (upper) Crop rows detection. (lower) Hough peaks in the 

accumulator space with cyan squares. 

UAVs in viniculture is particularly important especially for 

regions where there are indubitably identified needs. The 

described procedures are part of a work-in-progress and aim 

at an integrated framework that will provide multiple 

supportive utilities. Future work for improving and 

extending the overall established operational utilities will 

include classification tasks for crop/weed classification and 

possibly for diseases identification. Different descriptors 

such as Local Binary Patterns (LBPs) and Histogram of 

Oriented Gradients (HOG) as well as morphological texture 

descriptors will be taken into account. We expect that data 

fusion will produce a clear result capable of accurate 

classification. 
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