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Abstract—This article investigates the problem of deploying
a swarm of UAVs equipped with gas sensors for industrial
remote gas-plume sensing. This setup’s objective is to contin-
uously adjust the swarm formation to maximize the combined
perception for the dynamically evolved plume’s cloud, focusing
around areas with the highest concentration/intensity. Initially,
such a setup is formulated into an optimization problem, the
solution of which could be acquired by the maximization of
an appropriately defined objective function. Due to the model-
free approach, this objective function’s analytical form is not
available, prohibiting standard gradient descent methodologies.
To this end, a tracking algorithm is developed and studied,
which operates in a distributed manner and enables the UAV
swarm to build a common consensus dynamically, during the
evolution of the leakage phenomenon. The overall performance
is tested in a simulative yet realistic environment using ANSYS
Fluent suite, considering a simultaneous gas-leak incident at two
different points. Aside from the standalone evaluation study, the
proposed gas-plume tracking scheme is able to outperform a
state-of-the-art alternative algorithm, namely Efficient Global
Optimization (EGO), in various simulation setups, deploying a
different number of UAVs on the field.

Index Terms—Remote gas sensing; Swarm Intelligence; Multi-
robot; Gas-plume tracking; Autonomous UAVs

I. INTRODUCTION

In certain applications, executing tasks related to inspec-
tion and monitoring usually impose practically unbearable
financial costs. Inspection and monitoring in remote (difficult
for humans to reach) and hazardous environments is one of
the most promising application domains for mobile sensory
platforms. The Unmanned Aerial Vehicles (UAVs) market has
grown significantly within the past years, modernizing daily
inspection and remote sensing applications. UAVs are proven
capable of gradually or entirely overtaking this responsibility
from humans, especially when the risk of human lives is over
certain limits i.e., highly hazardous or remote environments.
Such platforms’ versatility has led to the replacement of
humans with such sensory platforms in various domains. Low
production costs, satellite communication reliability, as well
as increased on-board computational capacity, have rendered
the use of unmanned vehicles a mainstream solution for low-
complexity operations nowadays. Moreover, the variety of
different UAV platforms and sensory add-ons are offering
a wide range of new commercial solutions [1] in many
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industrial domains where faster, safer, easier remote inspection
or surveillance are needed: Environmental state monitoring
[2]; Powerlines inspection [3]; PV panels inspection [4]; Large
buildings structural inspection [5]; Aiding in search & rescue
operations [6]; etc.

In recent years, several industrial (e.g., factories, harbors,
military hangars, warehouses, etc.) accidents have been caused
by either odor or odorless lethal (or flammable) chemical gas
leakages putting in direct danger workers, neighboring infras-
tructure as well as citizens. Several large industrial accidents
caused by infrastructure malfunctions and poor maintenance
have been reported resulting in devastating losses of human
lives. In addition, industrial gas leakages may have other side
effects that may severely impact the quality of breathable air
or even contribute to greenhouse gases in a long-term manner.
Gas emissions from accidental leakages, poorly maintained
combustion engines, as well as burnt chemicals, may cause
severe respiratory illnesses [7] and environmental problems
in high-density urban or suburban areas [8]. Gas emissions
also cause phenomena like acid rain, depletion of the ozone
layer as well as global warming. Unfortunately, most volatile
compounds are usually colorless, tasteless, and odorless and
cannot be easily recognized by humans early enough to acti-
vate appropriate countermeasures. The list of accidents caused
by air-pollutants, poisons, and chemical hazards or radiation
is still growing. Among others, one of the most devastating
accidents in the history of India; the 1984 Bhopal tragedy [9];
was caused by methyl isocyanate leakage that cost the lives
of 3000 people.

Accidents like that have motivated the research community
to investigate technological solutions that could effectively
identify, recognize, and react rapidly to improve response
times and provide valuable insights in time to decision-makers.
Currently, gas monitoring systems consist of a static network
of sensors that are distributed at the most prominent key
locations [10], [11]. However, gas plumes’ movement is a
dynamic phenomenon affected by several uncertain/unknown
factors: leakage source size and intensity, type of leaked gas,
surrounding obstacles, wind direction, wind speed, sensor
radius/range, etc. Such dynamics can affect the optimal po-
sitioning of stationary sensors, hindering the perceived overall
situation’s quality and certainty. To obtain a representative
and always-up-to-date picture of the gas plume spatial dis-
tribution, it seems essential to collect spatially distributed
concentration measurements from frequently (depending on
the phenomenon’s inertia) readjusted locations.
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As a result, airborne remote sensing platforms for auto-
mated monitoring and mapping applications [2] of dangerous
gas leaks and plumes are considered the most appropriate
solution to tackle the dynamicity of the moving plume mon-
itoring problem. UAVs have already been demonstrated for
civil purposes including various applications of gas detection
[12], such as obtaining gas concentration mapping [13], [14],
monitoring emissions [15], [16], and gas source localization
[17], [18], [19] in environmentally sensitive areas. The most
popular approaches in the literature for UAVs swarming
are based on biologically-inspired algorithms [20] e.g., Grey
Wolf Optimization (GWO) [17], Particle Swarm Optimization
(PSO) [21], [22], [23], and Ant Colony Optimization (ACO)
[24]. GWO variances are limited by the minimum number
of available agents; since all consider dynamically changing
roles of the same UAV based on the currently perceived
situation e.g., alpha, beta, delta, and omega agents suggest
that at least 4 agents should be available [18]. PSO variances
are usually significantly affected by the stochasticity of each
searcher’s velocity that may potentially hinder its performance
in highly non-linear problems, requiring several hundreds of
iterations to converge [25]. ACO, similar to PSO and GWO,
lacks practical applicability in large-scale problems, where
several hundreds of iterations are required to converge to
the optimal formation after every timestamp; especially in
cases where the simulated environment is not static [26],
[27] or a model of both the UAVs and the environment is
needed for evaluating all candidate configurations [28], [29].
All these factors have not allowed the universal appliance of
autonomous swarm systems, and in the vast majority of the
real-world scenarios, human operators are still used to operate
each UAV manually. To make matters worse, the coordination
among all these UAVs’ pilots is not easy, especially for time-
critical applications.

A. Contributions

Motivated by the aforementioned limitations, a novel ap-
proach for multi-UAV swarm path planning and plume mon-
itoring has been developed based on a well-established and
thoroughly evaluated [30], [31], [32], [33] model-free op-
timization methodology – namely Cognitive Adaptive Opti-
mization (CAO) [34], [35]. The distributed plume tracking
approach, originally developed in [36], deviates from the
aforementioned CAO family of approaches, mainly in its
distributed nature. More precisely, at each iteration, each UAV,
although it does not have any information regarding i) the
decision variables of the other UAVs, ii) their measurements,
and iii) the overall accomplishment of mission objectives, is
capable of effectively updating its decision variables recog-
nizing its role to the swarm. The latter can be achieved by
optimizing a specialized objective function that is tailored to
each UAV, which quantifies the contribution of this UAV to
the overall mission objectives. Although each UAV optimizes
this specialized objective in an isolated way, the swarm can
build a common consensus regarding the mission at hand.

In this study, the test scenario simulates, using the powerful
ANSYS Fluent suite [37], a realistic case where gas leakage

unexpectedly occurs in an indoor industrial environment, and
the swarm of UAVs operates in situ where large obstacles
and critical infrastructure co-exist. The distributed multi-robot
algorithm for plume tracking was able to dynamically adapt
to the differentiated dynamics (initial UAV positions, number
of available UAVs, etc.) of each experiment and effectively
track the simulated gas-leaked plume even from the initial
timestamps and maintain/track high-performance levels until
the end of the simulation (see section IV for more details);
property which is quite crucial especially when critical in-
frastructure or human lives are in danger and fast response
is vital. During the simulated evaluation, the UAVs exhibit
a high level of coordination among them: separating tasks,
combining locally their sensors’ capabilities to adequately
capture high-intensity phenomena, etc. It should be highlighted
that none of these traits were explicitly designed by a human
operator or even included in the objective function. Rather,
the proposed approach leaned these behaviors to effectively
accomplish the high-level objective. Finally, the proposed gas-
plume tracking algorithm’s performance is compared against
a state-of-the-art algorithm, tailored for optimizing expensive
black-box functions, namely Efficient Global Optimization
(EGO) [38], [39]. For this evaluation, a pool of 800 different
experimental setups were generated. The list consists of 100
experiments with randomly chosen initial positions for each
one of the 8 different fleet-sizes, starting from 4 up to
18. The results clearly indicate that the proposed gas-plume
tracking scheme outperforms EGO in the achieved value of
the objective function for all fleet-sizes, not only at the final
step, but also in each timestamp of the plume’s evolution. A
critical outcome of this evaluation procedure is that for fleet-
sizes greater than 12 UAVs, the proposed approach is able
to deliver almost the same UAVs’ formation, even from the
early timestamps, independently of their initial deployment,
i.e., negligible standard deviation around mean performance.

B. Paper Structure
The following sections of the paper are organized as: a

formulation of the gas-plume tracking problem with respect
to the UAVs’ positions and the critical objectives considered
in the optimization criterion has been included in section II;
section III describes the details of a specialized distributed
algorithm capable of adequately addressing the previously for-
mulated optimization problem; section IV presents the results
and the evaluation outcomes of the considered application;
while section V concludes the paper with remarks and the
outline of the future works.

II. PROBLEM FORMULATION

The swarm (team) is consisted of Nr UAVs that can move
inside an indoor environment of Tmax timestamps reflecting
the optimization horizon, having as objective to monitor re-
motely a moving gas-plume caused by spatially-unknown gas-
inlet sources.

A. Controllable and State Variables
Without loss of generality, it is assumed that the state

vector for each ith UAV, at k timestamp, is defined as
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xi(k) = [x, y] ∈ R2, i.e., only the movement in 2D plane
is controllable. It assumed that the height for each UAV was
fixed to be in-line with the security regulation and meet all the
relevant operational constraints (e.g., avoid moving to close to
a source or hitting the ceiling).

The considered system evolution dynamics follow a simple
yet commonly adopted (e.g, [40]) formula:

xi(k + 1)− xi(k) = u(k + 1) (1)

where ui ∈ R2 denotes the controllable vector for the ith UAV.
The augmented decision state and decision vectors, containing
all the UAVs variables, are as follows:

x(k) = [x1(k), x2(k), . . . , xNr (k)] (2)

u(k) = [u1(k), u2(k), . . . , uNr (k)] (3)

B. Operational Constraints

Controllable vector u should admit feasible values with
respect to the problem at hand. In other words, there is a
set of constraints that must be met at each timestep. This set
of non-linear constraints consists of the following attributes:

1) The UAVs are not allowed to fly over large obstacles
(representing very high and/or ceiling mounted industrial
machines and infrastructure).

2) The UAVs should remain within the building, avoiding
hitting its walls.

3) The UAV infrastructure considers a maximum moving
capabilities per timestamp, i.e., |ui| ≤ umax, ∀i =
1, 2, . . . , Nr.

All the previously defined constraints can be, in their general
case, represented as a system of inequalities:

C (x(k)) ≤ 0 (4)

where C includes all the needed inequalities that have to
be not positive in order to comply with the aforementioned
list of constraints. It must be emphasized, however, that the
specified constraints were imposed directly in the dynamics
of the system behavior instead of the distributed optimization
algorithm (see following section), where feasible solutions
were generated complying a priori with the default system
dynamics and the simulated operational constraints without
requiring feasibility check.

C. Observable Measurements

At each kth timestamp the swarm of UAVs can sense a
sub-part of the operational area that lies in the close vicinity
of each UAV’s location. The exact points of the environment
that can be sensed by the ith UAV are defined by its sensing
capabilities and the geometry of the local environment, i.e.,
obstacles’ formation. Let M (k)

i to denote the subset of all q
points of the environment that can sensed by the ith UAV
at kth timestamp. For each point q of the environment the
measurements from the ith UAV admit the following form:

yxi−q(k) =

{
f(k, q) + hξ(xi(k), q)ξ q ∈M (k)

i

undefined otherwise
(5)

where f(k, q) expresses the true (unknown) concentration
of the gas at q point, hξ(xi(k), q) is the multiplicative sensor
noise term and ξ is a standard Gaussian noise. The above
non-linear sensor model emulates the behavior of “electronic-
noses”, i.e., collected gas-sensors for e.g., CHx, COx, VOC,
NOx gases, as it relates the sensitivity/accuracy of the mea-
surement with the distance from that sensing point. The
measurements’ vector yi(k) for the ith UAV at each kth
timestamp, is a variable-sized collection of the previously
defined measurements:

yi(k) = [yxi−q1(k), yxi−q2(k), . . . , yxi−qm(k)] ,

∀qj ∈M (k)
i

(6)

where m denotes the current cardinality of Mi(k). The aug-
mented measurements vector is just a concatenation over all
UAVs:

y(k) = [y1(k), y2(k), . . . , yNr
(k)] (7)

D. Objective Function

The monitor formation of the swarm should be dynami-
cally adapted to maximize the combined (accumulated) levels
of sensed gas-plume intensity, i.e., synergistically maximize,
using the limited sensing capabilities, the coverage of the gas-
plume intense areas as its volume expands over time.

The accomplishment of such an objective is quantified in
the following instantaneous objective function:

Π (y(k)) =

Nr∑
i=1

∑
q∈M(k)

i ∪U

yxi−q(k)

‖xi − q‖2
+

∑
q∈D

yxj∗−q(k)

‖xj∗ − q‖2
+ γ

∑
q∈M(k)

1 ∪M
(k)
2 ∪...M

(k)
Nr

,

where j∗ = argmin
j,q∈M(k)

i

‖xj − q‖2

(8)

where U denotes the subset of all points q of the environ-
ment sensed uniquely by a single UAV, while D contains all
the points that have been measured by at least two UAVs.

Conceptually, the first two terms of (8) deal with reward-
ing high-intensity measurements weighted with each mea-
surement’s closest distance. More precisely, the second term
completely discards all duplicate measurements from other
UAVs that have been sensed from a greater distance. By doing
so, the system is enabled to develop coordination activities,
avoiding wasting the team resources on a single sub-part of
the terrain. The third term is responsible for maximizing the
overall sensory coverage in the environment, independently of
the underlying gas-plume intensity. The idea behind such term
is that when the UAVs cannot contribute much to the whole
monitoring task (either because the phenomenon is at its early
stages or there are plenty of UAVs deployed), they should
be as laid out as possible to increase the overall situational
awareness of the system. For this term, an extra weight (γ) is
added to express the supportive/secondary nature of such an
objective. In a nutshell, at each kth timestamp, by maximizing
this objective, the swarm is “forced” to utilize wisely its
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cumulative sensors’ capabilities, spreading the team members
over the whole mass of gas while aggregating in areas of high
intensity.

Due to the time-variant nature of the problem, the maximum
to (8) is not static and changes with respect to the changes
in the gas-plume evolution over time. Overall, the mission
objective is to acquire the maximum summation of such
instantaneous objective instances over the whole incident’s
horizon, i.e.,

J =

Tmax∑
k=1

Π (y(k)) (9)

E. Optimization Problem

Based on the aforementioned rationale, the problem of
controlling a swarm of UAVs in order to continuously track a
dynamic evolving gas-plume, can be equivalently formulated
as follows:

maximize
x(1),x(2),...,x(Tmax)

J (x)

subject to C (x(k)) ≤ 0, k = 1, . . . , Tmax.
(10)

Due to the time-varying nature of the problem, the max-
imum of (8) with respect to the swarm configuration in
each timestamp is different, or – to be more precise – is
gradually changing, rendering it quite challenging for “slow-
learning” algorithms. Apart from that, the previous formulated
problem has the inherent difficulty that traditional gradient-
based methodologies [41] cannot be directly applied, since
the analytical formulation for (8) and (4) are not available,
as they involve the unknown/unpredictable dynamics of the
gas evolution (e.g., the numerators in the first two terms of
(8) involve on-the-field measurements). Please note that if
we had all the information regarding i) the exact structure
of the operational area, ii) the dynamics that govern the UAVs
sensors, iii) the precise location of the sources along with
their emission rate, iv) the airflow movement over time, and
v) the composition of the gas substance, we could calculate
these functions analytically. However, to keep our approach
as generic as possible, we assume that no information is
available a priori. All these features – or at least the ones
that matter for the accomplishment of mission objectives
(8) – should be learned in real-time during the deployment
of the team of UAVs. In addition to the aforementioned
obstacles, solving such an extensive system of equations with
an increased number of UAVs (that acts as a multiplier to
the total number of controllable variables) could be a really
burdensome optimization problem.

III. DISTRIBUTED GAS-PLUME TRACKING ALGORITHM

To tackle all these issues, we carefully adapt the general-
purpose methodology of [36] to a distributed plume tracking
algorithm capable of calculating x(k) on-the-fly, to ultimately
optimize the objective function (9). In a nutshell, the algorithm
consists of both centralized and distributed operations as
described in the following subsections. A flowchart of the core
operations inside the distributed gas-plume tracking algorithm
is illustrated in figure 1.

A. Centralized Operations

The centralized process of the algorithm focuses on combin-
ing the measurements of the different UAVs and automatically
assign different –not imposed/designed by any human operator
– tasks on each UAV.

• Step 1 Gather all UAVs’ measurements (6) after the
execution of x(k) decision variables. It must be emphasized
that these steps can be performed even in cases where global
communication between all UAVs is not feasible; instead, each
robot can send and receive measurements to and from peer
UAVs. The latter can be achieved by introducing an additional
condition on the constraints set (4), ensuring the connectivity
among them.

• Step 2 Having the set of measurements y(k), we can
analytically calculate the objective function using equation (8):

Πk = Π (y(k))

• Step 3 For each UAV calculate the contribution to the
accomplishment of the plume tracking objective as follows:

∆i(k) =

Πk −Π

(
y1(k), . . . , yi−1(k), yi(k − 1), yi+1(k) . . . , yNr

(k)

)
‖xi(k)− xi(k − 1)‖

(11)
Conceptually, ∆i(k) carries information regarding ∂Πk

∂xi(k)

quantifying the effect of xi(k) on the current problem instance.
Note that ∂Πk

∂xi(k) is not available analytically, as the close
form that relates xi(k) with the objective function (8) is
environment/dynamics-dependent and generally not available.

• Step 4 Transmit only each scalar ∆i(k) value to the
corresponding ith UAV to initiate the distributed optimization
that is going to be performed in parallel, without any other
exchanging of information.

B. Distributed Operations

During the distributed optimization of the controllable vari-
ables of each UAV (1), the on-board controller is called to
design the next movement, so as optimize its contribution
∆i(k) with respect to the accomplishment of overall mission
objectives (8). Each such subproblem is a lower-dimensional
optimization problem, and thus can typically be solved more
easily and quickly than the full problem.

• Step 1 Initially the local cost function Ji(k) is updated
according to the following formula, where the term “local”
refers to the impact of the change in position of ith UAV on
the total performance criterion:

Pi(k) = Pi(k−1) + ∆i(k), ∀k ≥ 2, Pi(1) = Π(y(1)) (12)

• Step 2 Fit on the look-up table of the previously acquired
data, i.e., 

xi(k −W + 1) | Pi(k −W + 1)
xi(k −W + 2) | Pi(k −W + 2)
... |

...
xi(k − 1) | Pi(k − 1)
xi(k) | Pi(k)

 (13)
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Fig. 1: Flowchart of the distributed tracking algorithm. At each timestep, all the UAVs’ measurements y (annotated with the
corresponding distance matrix) are compiled to calculate the current value of the objective function Π(y). Then, each ith
UAV’s contribution ∆i is calculated. This scalar metric ∆i contains “distilled” information about the progress of the ith UAV
with respect to both the plume tracking objectives and the formation of the other UAVs. After transmitting all ∆i, each UAV
calculates –in a fully distributed fashion– its next sensing position, employing the optimization procedure of subsection III-B.

an estimator as follows:

Pi(k) ≈ P̂i(k) = θτi (k)φi
(
xi(k)

)
(14)

where W denotes the time-window over which the estimation
is taking place, φi is the regression vector and θi is the estima-
tor parameters’ vector. The estimator vector θi is constructed
using standard Least-Squares (LS) estimator principles, i.e., θi
is obtained by solving the following LS optimization problem:

θi(k) = argmin
ϑ

k∑
`=k−W+1

(
ϑτφi

(
xi(`)

)
− Pi(`)

)2

(15)

φi(xi) may admit several forms that respect the universal
approximation property [42]. For this realization, a set of L
3rd degree monomials is employed.

• Step 3 Generate randomly a set of B candidate perturba-
tions:

δx
(1)
i (k), δx

(2)
i (k), . . . , δx

(B)
i (k) (16)

that respect the operational constraints (4), i.e.,

C
([
X̄1, . . . , X̄i−1, xi + δx

(b)
i , X̄i+1, . . . , X̄Nr

])
≤ 0,

∀b = 1, 2, . . . , B

∀i = 1, 2, . . . , Nr

(17)

where X̄j(k) is a 2D sphere with center xj(k) and radius
umax that denotes the possible movements according to (1)
for the jth UAV (j 6= i), at kth timestamp1.

The random choice for the candidates is essential and crucial
for the efficiency of the algorithm, as such a choice guarantees

1The evaluation of (17) can be performed without the need to notify
each UAV about the current swarm configuration, by making the reasonable
assumption that each UAV is able to perceive objects – and therefore other
UAVs – in a distance that is at least two times its maximum movement
capabilities umax.

that P̂i(k) is a reliable and accurate estimate for Pi(k); see
[34], [35] for more details.

• Step 4 Evaluate the set of feasible candidates (16) from
previous step on the constructed estimator (14) and pick the
candidate perturbation with the “best” effect:

b∗ = argmax
b=1,...,B

θτi (k)φi

(
xi(k) + δx

(b)
i (k)

)
(18)

• Step 5 Set ui(k + 1) = δx
(b∗)
i (k) utilizing the best

candidate and update the next state variables according to (1):

xi(k + 1) = xi(k) + ui(k + 1) (19)

• Step 6 Synchronous update of the current timestamp:

k = k + 1

Note 1: The above, distributed update of the decision
variables does not need information about what is happening
to the rest of the UAVs. All the crucial information has been
encoded to the scalar value ∆i(k). Additionally, it must be em-

phasized that the calculation of Π

(
y1(k), . . . , yi−1(k), yi(k−

1), yi+1(k) . . . , yNr (k)

)
,∀i = 1, 2, . . . , Nr does not require

any new measurements, as the sensor readings that are needed
to calculate the global objective function are already available
from the previous timestamp.

Note 2: The local convergence of the complete algorithm
can be guaranteed in the general case where both unknown
function Π(·) and each UAV’s contribution Pi are non-convex,
non-smooth functions (sketch of proof has been established
in [43], [36]), as the behavior of the complete algorithm
approximates one of block coordinate descent (BCD) family
of approaches, namely ([44], Algorithm 1).
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C. Computational Complexity

During the algorithm’s operation, there are two sets of
operations that significantly affect the decision time. The first
is at the calculation of the objective function (8) during the
centralized operations. Having acquired the measurements (6),
the complexity for the calculation of the objective function
value grows linear with respect to the number of UAVs ×
the number of distinct measurements points for each UAV,
i.e., O (Nrm). Considering also (11) the objective function
is going to be evaluated Nr times to calculate each ∆i(k),
the overall complexity of the centralized activities is turned to
O
(
N2
rm
)
. In general, the calculation of such value is usually

very strongly dependent on the underlying sensors’ dynamics
and the corresponding density in the produced measurements’
array. In essence, this is an aspect that forms a trade-off
between dense measurements and decision time, that should
be considered at the realization of the system. The second
pillar of computational complexity is with respect to per UAV
calculations. The majority of computational burden for each
UAV is accumulated in solving the LS optimization problem of
(15). LS optimization problem requires O

(
W 2L+ L3

)
[45],

where L is number of monomials in each φi and W the time-
window.

IV. SIMULATION RESULTS AND EVALUATION

A. Environment Details

To evaluate the performance of the proposed algorithm
the high-fidelity ANSYS Fluent Computational Fluid Dy-
namics (CFD) suite [37] was utilized. The simulation hori-
zon considers 1000 timestamps, each reflecting a 0.3-second
time-interval. The simulation environment was defined as a
rectangle area of 92 × 42m2 that contains stationary, non-
traversable obstacles as depicted in figure 2. For the meshing
of the operational area, a standard linear model, specialized
for computational fluid dynamics, with a default element size
of 5.099m is deployed.

Fig. 2: Experimental 2d plane indoor map. The two blue
arrows inside the environment indicate the locations of CH4

sources. Ventilating air is streamed in from the left side and
exhausted to the right-hand side of the environment.

In the adopted scenario, a constant flow of ventilating
airstreams with a velocity magnitude of 1m/s, a turbulent
intensity of 10% and hydraulic diameter of 0.44m was applied
from the left side of the environment as shown in figure 2
which depicts the placement of the two odor sources as well.

The chosen substance was methane (CH4) and was diffused
to the environment by two sources that are depicted in figure
2 with blue arrows inside the environment. CH4 is dispersed
with a velocity magnitude of 40m/s, a turbulent intensity of
10% and a hydraulic diameter of 0.01m. Figure 3 graphi-
cally illustrates the diffusion of CH4 with aforementioned
parameters inside environment of figure 2 for four indicative
timestamps.

(a) Early stage (b) 33% progress

(c) 66% progress (d) Final stage

Fig. 3: CH4 diffusion over the experiment’s horizon. The in-
tensity of CH4 in each point of the environment is represented
with a colormap (blue-red).

B. Swarm Realization

Having defined the details of the underlying phenomenon,
now the focus is shifted towards the swarm dynamics. It is
assumed that all the members of the swarm have homogeneous
sensing and moving capabilities. In particular, in all simulation
scenarios, all UAVs have a sensing radius of ρ = 12m which
also affects their respective sensing reliability, as presented in
(5), while all UAVs are capable of repositioning themselves
no more than 0.7m per timestamp.

The mounted gas sensors are considered to present noisy
disturbances as shown in (5), reflecting the sensing reliability
as the distance between the sensor and the measured points
changes. In specific the multiplicative noise hξ(·) of (5) is
defined as the squared Euclidean distance between sensor and
sensing point, i.e., as the distance between the sensor and
the sensing point increases, the metering accuracy/sensitivity
decays smoothly; as follows:

hξ(xi(k), q) = ‖xi(k)− q‖2 , ∀q ∈M (k)
i ,∀i = 1, 2, ..., Nr

Finally, γ weight in (8) should be set to render the cor-
responding term auxiliary, but not negligible. Based on the
sensors’ capabilities and the environment size as defined
before, it is found that γ = ρ (=maximum sensing radius)
is sufficient enough to serve such objective.

C. Algorithm Hyperparameters

Before continuing on the analysis of the results, let’s first
present the algorithm’s utilized values (section III) along with
the rational behind each selection. Table I summarizes the free
parameters along with the selected values of the distributed
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part (subsection III-B). Please note that no free parameters
exist on its centralized counterpart (subsection III-A).

TABLE I: Algorithm’s parameters (Section III)

Parameter Value Equations
Forgetting window W = 20 (13)-(15)

Number of monomials L = 10 randomly chosen 3rd-
degree monomials in each φi(x)

(15)

Number of
candidate perturbations B = 100 (16)

Given the time variant-nature of the problem (8), past
tuples {xi(k);Pi(k)} of (13) quickly become obsolete, and
therefore a relatively small window of W = 20 is chosen
for the LS estimation (15). Extensive analysis in optimiza-
tion problems with similar set-ups [36], [46], revealed that
the utilization of L = 10 randomly selected 3rd degree
monomials is sufficient enough for 2D control vector space
(15). Finally, although, there exist no theoretical results for
providing the lower bound of number of random candidate
perturbations B (16), several realizations (e.g., [43], [36])
indicate B > 2 × [the number of controllable parameters],
therefore, B = 100 is a safe choice for the problem at hand.
Overall, and if required, these parameters (Table I) could
be manually tuned to achieve improved application-oriented
performance.

D. Performance Analysis

To initially assess the performance of the gas-plume tracking
scheme (section III) a swarm of Nr = 10 UAVs is deployed in
random initial positions. Figures 4a - 4d depicts four progress
snapshots of the swarm formation with respect to the evolution
of CH4 diffusion. The CH4 diffusion evolution is illustrated
in these figures’ background over time, with a colormap,
spanning from zero (total black field points) to levels of u 0.7
mass fraction of CH4 (indicated with light brown). The cyan
rhombuses and the corresponding fading cyan region around
them represent the UAVs’ positions and their field of coverage,
respectively.

A close examination of the swarm configuration, especially
in figures 4b,4c & 4d, can reveal that all UAVs have been
placed strategically over the entire volume of the constantly
expanding gas plume; deployed to synergistically track as
much as possible of the total intensity of the underlying
CH4 diffusion phenomenon. Moreover, the concentration of
UAVs inside the gas-plume was relative to the intensity of the
phenomenon, i.e., more UAVs can be observed in the lighter
shades of the CH4 colormap. Please note that, these features
were achieved without any global optimization procedure since
each local UAV agent did not have explicit access to the
actual position of the others nor their measurements, all the
information regarding the problem to be solved has been
packed inside each scalar ∆i(k) (11) that gets transmitted at
each kth timestamp to the ith UAV. All the timestamps of this
experimental instance have been compiled to a video that can
be found under this link2

2https://youtu.be/9jKD6ORLxgQ

The experimental performance evaluation of the proposed
approach is continued with a statistical analysis of the con-
verged swarm formation with respect to the initial deployment.
To statistically evaluate the robustness of the approach, the
previously described setup with a swarm size of Nr = 10
UAVs is repeated 100 times with different random initial
positions. Figure 5 aggregates all the positional information for
all experiments with the utilization of equipotential lines. As it
is expected, equipotential lines in figure 5a have a uniformly
random formation, validating the random initial deployment
of UAVs. However after some iterations, as it is depicted in
5b, 5c & 5d, the centers of formed clusters of UAVs are in
alignment with the intensity of methane. Studying also the
result of figure 5 in combination with figure 4, it can be derived
that the carefully designed, advantaged positions that were
observed in figure 4, were not the outcome of just a simple
“good run” nor a result of some favorable initial positions.
Actually, the proposed multi-UAV gas-tracking algorithm is
consistent in delivering these configurations, independently of
the UAVs’ initial positions. For demonstration purposes, the
evolution of the equipotential lines during the execution of all
100 experiments with random initial deployment of Nr = 10
UAVs; has been progressively illustrated in a video under this
link3.

E. Comparison with EGO for Different Swarm Sizes

The evaluation analysis is concluded with a comparison
study for different number of UAVs on the deployed swarm,
between the proposed methodology (section III) and a state-
of-the-art methodology for optimizing expensive black-box
functions [38], [47], originally described in [39] under the
name EGO (Efficient Global Optimization). EGO has been
successfully applied in several engineering applications (e.g,
[48], [49]), exhibiting efficiency in the optimization of model-
free systems, with respect to the total number of actual
evaluations on that system. This last remark renders EGO a
suitable algorithm for maximizing (8), with a limited number
of measurements’ vectors (7) that are acquired from applying
the decision variables (1) to the actual robotic platforms.

EGO algorithm is employed to optimize the full/centralized
problem at hand (10), by directly optimizing the augmented
state-space vector (2). The implementation of [47] is utilized
(code available from github4) with the only modification of
forcing the search, in each timestamp, to be subject to the
operational constraints (4) of the multi-robot setup.

For this experimentation study, 8 different swarm sizes,
i.e., {4, 6, 8, 10, 12, 14, 16, 18} UAVs, were employed. For
each one of these swarm sizes, 100 initial swarm config-
urations were randomly generated, forming a pool of 800
different experimental setups. Both the proposed gas-plume
tracking approach and EGO algorithm were evaluated on these
experimental setups, composing a total of 1600 standalone
experiments. Figure 6 summarizes the performance results of
such evaluation study. In all eight graphs, the thick colored
lines represent the average performance for each timestamp

3https://youtu.be/sJeSuCd8ciw
4https://github.com/zhandawei/Single objective EGO algorithms
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(a) Early stage (b) 33% progress

(c) 66% progress (d) Final stage

Fig. 4: Illustrative example of 10 UAVs adjusting their positions to track the time-varying gas-plume phenomenon. Cyan
rhombuses and the fading cyan region around them represent the positions of the UAVs and their field of coverage, respectively.
The intensity of the underlying CH4 diffusion is illustrated with the brown-shaded colormap, spanning from zero (black field
points) to levels of u 0.7 mass fraction of CH4 (indicated with light brown tones).

over the set of 100 experiments for the proposed (blue) and
EGO (orange) approach. The standard deviation from each
average value is depicted with the shaded area around the
corresponding thick colored line.

The first remark is that, for all swarm configurations, both
algorithms accomplish to improve the overall cognition by
constantly improving the swarm formations. Also, as the
swarm’s size increases, the overall performance value in-
creases too. This is an anticipated behavior, as both decision-
making algorithms can spare more UAVs to monitor exten-
sively every part of the plume. Overall, the proposed decision-
making scheme outperforms EGO in both average value and
standard deviation for all the investigated setups and times-
tamps. Aside from the average value, the proposed decision-
making exhibits extremely low variance, especially in setups
with an increased number of UAVs. Technically, for swarm
sizes greater than 12 UAVs and if the proposed methodology
has been applied, one could be quite confident about the exact
formation of UAVs in the environments by just knowing the
current timestamp. Indicatively, the average (over all different
swarm sizes) standard deviation for the final timestamp is 6.8
and 42.63 for the proposed decision-making scheme and EGO,
respectively.

V. CONCLUSIONS AND FUTURE WORK

A semi-distributed algorithm for plume tracking using a
team of UAVs has been proposed. Initially, the problem has

been transformed into a constrained optimization problem,
proposing an objective function scheme to be optimized with
respect to swarm configuration. However, the optimization of
such an objective function cannot be performed using stan-
dard gradient descent methodologies; therefore, a specialized
optimization scheme is developed to approximate the solution
of such an optimization problem. One of the fundamental
elements of this proposed algorithm is that it is not specifically
tailored to the dynamics of either UAVs or the environment;
instead, it learns, from the real-time sensor measurements,
exactly the most effective formations of the swarm for the
underlying plume-tracking task. A simulator that utilizes the
high-fidelity dynamics of ANSYS Fluent suite was developed
to evaluate the proposed scheme’s performance. The results
of such evaluation proved that the plume-tracking algorithm
can optimize the swarm configuration in real-time, adapting to
the number of operational UAVs, independent of their initial
positions. A cornerstone of the experimental evaluation is
the side-by-side evaluation with EGO, an algorithm tailored
for optimizing expensive black-box functions. In the reported
analysis, the monitor positions calculated from the proposed
gas-plume tracking algorithm were consistently improved
compared with the EGO case, having also low dependence
on the initial deployment.

Several avenues of exploration are left open for future work.
One direction is to develop a real-life testbed where we could
apply the proposed gas tracking algorithm. Apart from the
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(a) Early stage (b) 33% progress

(c) 66% progress (d) Final stage

Fig. 5: Statistical equipotential lines aggregating 100 experiments with different initial swarm formation for the case of Nr = 10
UAVs over the experiments horizon. The colorbar on the right side of each figure depicts the mapping between color-lines and
number of robots found on the corresponding areas.

swarm of UAVs with the appropriate sensor capabilities, one
should design a safe-n-secure operational area for the UAVs
to perform the tasks autonomously. Strong candidates for such
testbeds are abandoned factories and other vast – empty of
people – structures that allow the swarm of UAVs to operate
freely without any time constraint or other limitation. Another
direction could be the appliance in a similar domain, e.g. oil
spill tracking, to check the performance of the proposed multi-
robot tracking scheme under the sea-related dynamics.
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