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Abstract - Recently, special attention has been paid in developing methodologies
and systems for embedding autonomy within smart devices (Things). Moreover, as
Things typically operate in an interconnected IoT ecosystem, autonomous opera-
tion must be performed in a cooperative fashion so the different Things coordinate
their autonomous actions towards meeting high-level objectives and policies. Em-
bedding Things with cooperative autonomy typically requires a tedious and costly
effort not only during the original ecosystem deployment but throughout its life-
time. The current study describes CAO (Cognitive Adaptive Optimization) – and
its distributed counterpart L4G-CAO (Local for Global Cognitive Adaptive Op-
timization) – which can overcome this shortcoming. CAO and L4G-CAO – which
have recently been introduced and tested in a variety of IoT applications – can
embed Things with cooperative autonomy in a plug-n-play fashion, i.e., without re-
quiring the aforementioned tedious and costly effort. Results of the application
of the aforementioned approaches in three different application domains (smart
homes and districts, intelligent traffic systems and coordinated swarms of robots)
are also presented. The presented results demonstrate the potential, of both ap-
proaches, to exploit the IoT automation functionalities in order to significantly
improve the overall IoT performance without tedious effort.
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1 Introduction

Recent research efforts have been focusing on developing methodologies that em-
bed autonomy within smart devices (Things). Next generation IoT must be au-
tonomous as well as cooperative so as to be able to autonomously coordinate
Things actions towards meeting common high-level goals. Moreover, Things should
also be able to compute and implement their intelligent actions in a highly dis-

tributed/ self-sustained manner as it is not possible to employ traditional central-
ized approaches in massive scale systems. Consider, for instance, smart home sys-
tems which are becoming more and more affordable for the home user. Embed-
ding smart home systems with cooperative autonomy, where smart thermostats,
electric appliances, electric chargers, etc., autonomously act and coordinate their
actions based on indoor and weather conditions, varying energy prices, renew-
ables’ generation and user preferences can result in tremendous energy bill sav-
ings [5, 7, 12, 31, 46, 47, 56]. Most importantly, a massive implementation of coop-
erative intelligence capable of optimizing energy consumption to the benefit of
an entire community (smart neighborhoods or smart cities) can have even more
significant social and business impacts.

Distributed intelligent control methodologies are probably the best candidate
for embedding Things with cooperative autonomy. The vast majority of such
methodologies methodologies needs a model (mathematical or simulation-based) of
the IoT ecosystem [8,11,14,18,24,25,33,43,51,54]. Developing, however, a model for
an IoT ecosystem is usually a quite complex and cumbersome - or sometimes not
feasible at all - task; especially when large and heterogeneous (multi-domain) IoT
implementations are considered. Most importantly, since the IoT ecosystems are
constantly subject to changes (e.g., failures of some nodes, geographical expansion
of the IoT ecosystem, addition/removal of Things, changes in external factors such
as users’ behavior), a repetitive revising/re-engineering process and verification of
the model is usually needed. On the other hand, intelligent control methodologies
that do not require an accurate model or are model-free [10, 16, 17, 29, 35, 52, 57],
may exhibit an unacceptable performance due to poor adaptation while their ap-
plication is typically limited to small- or medium-scale applications.

The authors have recently developed CAO (Cognitive Adaptive Optimiza-
tion) [29,35] and its distributed counterpart – the L4G-CAO (Local4Global Cogni-
tive Adaptive Optimization) [30]. These two toolsets have extensively been demon-
strated in a variety of large-scale real-life IoT applications, exhibiting a remark-
ably efficient behavior in embedding Things with cooperative autonomy that can
overcome the above-mentioned shortcomings of state-of-the-art systems and ap-
proaches [1,3,4,9,20,21,27,34,36–41,49]. CAO and L4G-CAO are model-free but
contrary to the existing tools they do not present any poor performance problems.
Thanks to their self-learning/self-tuning mechanisms, they are able to optimize the
IoT performance in a rapid, safe and smooth-transient manner. Moreover, they are
highly scalable as they can handle IoT applications of a very large-scale and com-
plexity as well as applications that involve highly heterogeneous elements/entities.
Finally, due to their self-adapting and self-learning capabilities, their operational
and maintenance costs are minimal i.e., there is no need for tedious programming,
verification and calibration prior or during the application due to IoT topology
and ecosystem diversions.
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The main purpose of this paper is to provide an overview of the use of CAO and
L4G-CAO for embedding autonomy within IoT ecosystems. This overview covers
theoretical results (reported in [29, 30, 35]) as well as practical implementations
in different IoT-related applications (reported in [1,3,4,9,20,21,27,34,36–41,49])
and concerns:

– A unified mathematical formulation of the problem of embedding cooperative
autonomy within IoT ecosystems and the demonstration of how CAO and
L4G-CAO can be employed for addressing such a problem;

– An overview of the main functionalities and mathematical attributes of CAO
and L4G-CAO when applied for embedding autonomy in IoT ecosystems ;

– A brief overview of the results and main conclusions of implementing CAO and
L4G-CAO in challenging real-life large-scale IoT ecosystems.

2 The Problem Set-up

Let us consider an IoT ecosystem consisting of N Things (smart devices) with
each of the Things being embedded with an Autonomy Decision-Making Mechanism

- (ADMM) as follows:

ui(t) = $(θi, zi(t), di(t)) (1)

where t denotes the time index; $(·) is a non-linear vector function; zi(t), di(t)
denote the vectors of local data (e.g, sensor measurements) and external data (e.g.,
information available through the web/cloud), respectively, available to the ith
Thing at time t; and θi is a vector of tunable parameters configuring the ADMM
of the ith Thing, i.e., for different choices of θi we obtain different autonomous
behaviours for the ith Thing. Let z, d, u, θ denote the augmented vectors of local
and external data, actions and tunable parameters, of the overall IoT ecosystem:

z =

 z
τ
1

...
zτN

 , d =

 d
τ
1

...
dτN

 , u =

 u
τ
1

...
uτN

 , θ =

 θ
τ
1

...
θτN


The performance of the overall IoT ecosystem, is evaluated through an objective
function (performance index) over a time-horizon T

J =
T−1∑
t=0

πt (z(t), d(t), u(t)) (2)

where πt are known non-negative functions.

Example 1 To better understand the above definitions consider the example of
a smart home that is comprised of N rooms: a smart device in each room is
used to autonomously control the room’s A/C (Air-Conditioning) set-points so
as to (a) minimize energy bills and (b) keep the rooms’ climate conditions (e.g.,
temperature, humidity, etc.) within some pre-specified limits. Then, zi contains the
ith room’s indoor sensor conditions (e.g, temperature,humidity, etc.), ui denotes
the ith room’s A/C set-point and di contains external information such as the
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current and forecasted external weather data, energy prices, etc. The functions πi
are typically calculated as follows:

πt (z(t), d(t), u(t)) = aEnergy Consumed(t)

+bPenalty for indoor conditions(t)

where the function “Penalty for indoor conditions” penalizes the cost whenever
some room’s indoor conditions exceed the pre-specified limits and a, b are ap-
propriately defined weighting/normalizing factors. Finally, the time-horizon T is
typically selected to be one day. See e.g., [4,9,27,36] for more details on the above
definitions. �

Remark 1 Typically, the ADMM is designed using parametrized rule-based logics
or it is based on standard control system theory tools. Apparently, the choice of
the ADMM is crucial for the efficiency of the IoT ecosystem: it must be designed
in such a way that different choices of its tunable parameters θi should cover all
possible and feasible autonomous behaviours. The reader is referred to the practical
applications described in the next two sections where examples of choices for the
ADMM are provided. �

Remark 2 The above formulation is valid not only in the case of IoT ecosystems
consisting of homogeneous Things (like the smart home example provided above)
but also for cases where heterogeneous Things live and interact in the same ecosys-
tem. Moreover, the formulation is still valid – under some minor modifications –
in a System-of-Systems (SoS) set-up, where if instead of N Things, the overall
ecosystem is “split” into N constituent “smaller” ecosystems with each of them
consisting of a group of Things. �

Using standard results from systems theory (see e.g., [32]), it can be seen that
the local data states are evolving according to an equation of the form

zi(t+ 1) = gi(z(t), z(t− 1), . . . , z(t− Tz),
u(t), u(t− 1), . . . , u(t− Tu),

di(t), di(t− 1), . . . , di(t− Td)) (3)

where gi(·) is a non-linear vector function of its elements and Tz , Tu, Td denote the
local data state memories. The above equation describes the effect of the Thing’s
actions to the IoT ecosystem environment. For instance, in the case of Example 1,
the above equation corresponds to effect the A/C set-points (controlled through
the Thing’s ADMM) to the rooms’ climate conditions.

Replacing (3) into (2) and using (1), it can be seen after some algebraic ma-
nipulations [32] that the performance index J is a function of the tunable parameters

θ and the history of the external data over the time-horizon T , i.e.,

J ≡ J(θ,DT ) (4)

where DT = [dτ (1), . . . , dτ (T )]. Therefore, the problem of optimizing the overall IoT

ecosystem performance can be mathematically formulated as the problem of finding

the values for the tunable parameters θ that optimize the cost criterion (4). Please
note that the dynamics (3) are “hidden” in the equation (4): in other words, the
computation of (4) requires knowledge of both the cost function elements πi(·)
as well as the functions gi(·). As a result, there are two main limitations when
attempting to solve such an optimization problem:
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– (Limitation 1). It is difficult, if feasible at all, to apply standard optimization
approaches (such as e.g., gradient descent). Standard optimization approaches
require an analytic form of the cost function (4) and since this function de-
pends on the dynamics (3), knowledge of the analytic form of the overall IoT
ecosystem dynamics is required. However, extracting the analytic form of the
IoT ecosystem dynamics is an extremely difficult task, if not impossible at all,
even for small-scale implementations. To make things even worse, as the IoT
ecosystem is usually subject to minor or major changes (e.g., addition/removal
of devices, changes in the end-users behaviour, etc.), a constant adaptation of
the model for the IoT ecosystem is required.

– (Limitation 2). Intelligent, adaptive and/or learning approaches which do not
require knowledge of the analytic form of the IoT ecosystem dynamics may
exhibit [29, 35] a very poor performance due to adaptation which, in turn,
may put safety of operations at stake. Moreover, typically such approaches are
applicable to small- or medium-scale applications.

3 Centralized Version: The Cognitive-based Adaptive Optimization Tool

CAO [29,35] can overcome both Limitations 1 and 2, described in the previous sec-
tion. Below, we provide a brief description of CAO along with its main properties.
To start with, let us briefly explain how CAO is implemented. CAO starts with
an initial set of tunable parameters θ(0) and lets the ADMM mechanisms operate
the Things over a time-horizon T by keeping the tunable parameters constant and
equal to θ(0) 1

After the system operates over T time-units, CAO evaluates its performance
through the cost function J(0) and calculates θ(1) using the algorithm of Table 1.
This procedure is repeated for the next T time-units so as for CAO to calculate
θ(2) using J(1),then for the next T time-units in order to calculate θ(3) using J(2)
and so on. The details on how θ(1), θ(2), . . . are calculated are provided in Table
1. The next Theorem summarizes the main properties of CAO. Its proof can be
found in [29].

Theorem 1 Let DT (k) − D̂T be zero-mean and bounded. Then, under some mild

conditions on the continuity of J , the following hold:

(a)

θ(k) 7→ θ∗

where θ∗ denotes a local optimum of J , i.e., ∇J(θ∗, DT (k)) = 0.

(b)

J(k + 1) ≤ J(k) +O(|DT (k)− D̂T |) + ε(k)

where ε(k) is a term that decays to zero exponentially fast.

1 Typically, the initial set of tunable parameters θ(0) is chosen based on past experience
so as to provide a performance for the IoT which is safe and acceptable but, of course, far
from being efficient. For instance, in applications such as smart homes/districts or intelligent
traffic systems, such initial parameters θ(0) can be easily extracted from the usual practice,
see [3,34,39] for more details. More advanced choices of the initial parameters θ(0) can also be
used, see e.g. [4, 9, 27, 36, 37] for instance, where the initial parameters correspond to control-
based principles. On the other hand, the choice of the time-horizon T depends on the particular
application. For instance, in smart homes/districts and traffic systems, the horizon T is chosen
to be a whole day (24h) as the system preserves a 24h periodicity.
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Table 1: The CAO Algorithm

At every kth iteration (where each iteration involves the IoT ecosystem operating for T time-
units with θ being constant and equal to θ(k)) measure the IoT ecosystem performance J(k)
and update θ using the following steps:

1. Construct an estimator for J(k + 1) as follows:

Ĵ(k + 1) = ϑτ (k)φ

(
θ(k), DT (k)

)
(5)

where Ĵ(k+1) denotes the estimate (prediction) of J(k+1), φ is the regression vector and
ϑ is the estimator vector. Standard function approximation schemes (e.g. polynomials)
can be used to construct estimator (5). The reader is referred to [29, 34] for more details
on how to construct such an estimator (it must be emphasized that it suffices to use
estimators of very “simple” structure and not very elaborate ones). The estimation vector
ϑ is constructed using standard Least-Squares (LS) estimation, i.e.,

ϑ(k) = argmin
χ

k−1∑
`=k−W (k)

(
χτφ

(
θi(`), DT (`)

)
− J(`+ 1)

)2

where W (k) denotes the time-window over which the LS estimation is taking place.
2. Choose a positive function α(k) to be either a constant positive function or a time de-

scending function satisfying α(k) > 0,
∞∑
k=0

α(k) =∞,
∞∑
k=0

α2(k) <∞.

3. Generate – randomly or pseudo-randomly – a set of L candidate perturbations
δθ(1)(k), δθ(2)(k), . . . , δθ(L)(k) where δθ(j)(k) are vectors of the same dimension as θ(k)
and L is an integer satisfying L ≥ 2dim(θ).

4. Estimate the effect of each of the candidate perturbations to the current vector θ(k) by
employing the estimator (5) and pick the candidate perturbation with the “best” effect,

i.e., choose the vector δθ(j
∗)(k) that satisfies

δθ(j
∗)(k) = argmin

j=1,...,L

{
ϑτ (k)φ

(
θ(k) + α(k)δθ(j)(k), D̂T (k + 1)

)}

where D̂T (k + 1) denotes an estimate (prediction) of DT (k + 1).
5. Set

θ(k + 1) = θ(k) + α(k)δθ(j
∗)(k)

6. Go to step 1 until performance convergence has been achieved.

The reader is referred to [29, 34] for more details on the CAO algorithm as well as for guide-
lines for the selection of the different design parameters of the algorithm (regression vector
φ, α(k),W (k),etc.).

In simple words, the above Theorem states that:

– CAO guarantees that the tunable parameters of the ADMM mechanisms will
converge to their locally optimal values, provided that the prediction D̂T sat-
isfies some typical assumptions (see the 3rd item in this list for more details).
Apparently, the performance improvement depends on the nature of the par-
ticular local optimum θ(k) where it will converge. If the ADMM mechanism is
suitably chosen then the improvements that such local optimum may provide
could be significant: for instance, in the practical applications, which are de-
scribed later in this paper, the improvements can reach 30% or even higher. On
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the other hand, if the ADMM is chosen according to the procedure suggested
in [2], θ(k) converges to the point whose distance from the globally optimal per-

formance is proportional to the complexity of the ADMM mechanism: the more
complex is the ADMM mechanism the closer to the globally optimum perfor-
mance is obtained (at the expense, of course, of a convergence speed which is
inversely proportional to the ADMM complexity).

– Part (b) of Theorem 1 establishes that CAO does not face the risk of the poor
performance (which is one of the main shortcomings of other adaptive/learning
approaches): the cost J(k + 1) is less than its value of the previous iteration
plus two terms: (a) an – unavoidable – term that depends on the accuracy of
the prediction of the external data and (b) a term that converges to zero expo-
nentially fast. The exponentially fast convergence to zero is the best that any
adaptive/learning algorithm can achieve [19]. As a matter of fact, in the vast
majority of adaptive/learning schemes, a term similar to ε(k) is always present
- with the difference that such a term do not converge exponentially fast: as
a result such a term may take significantly large values during adaptation,
leading to situations of very poor or, even, unsafe performance.

– The properties of CAO are established based on some typical assumptions on
the prediction D̂T . Apparently, any type of algorithm depends on the accuracy
of the prediction D̂T which corresponds e.g., to weather predictions in the case
of smart home/districts, traffic predictions in the case of traffic systems, etc.

– Last, but not least, it is emphasized that due to the model-free nature of
CAO, it possesses self-reconfiguration capabilities: if the IoT infrastructure
changes (e.g., nodes added/removed), then CAO will automatically re-learn
and re-adjust the tunable parameters towards optimizing the altered system.
The robotic application mentioned in this paper exhibits such an attribute:
whenever the IoT system changes (because a node joins/leaves the system) or
whenever the user requirements change (which corresponds to a change in the
cost function J structure), CAO rapidly reconfigures itself towards efficiently
optimizing the altered system.

3.1 Smart Traffic Control (STC): Real-life application in the city of Chania,
Greece

One of the benefits of the impressive recent advances of the field of IoT, is that
it becomes more and more affordable and “easier” to deploy Smart Traffic Con-
trol (STC) systems to intelligently and more efficiently control and manage traffic
operations [3,34,39]. Unfortunately, embedding STC systems with intelligence re-
quires a tremendous amount of human effort and time for programming and tuning
the IoT involved in these operations. The programming and tuning procedure in-
volves the calibration, adjustment and programming of hundreds of parameters,
rules, operational schedules, decision-making mechanisms, etc. and are typically
performed by experienced personnel. Thus, because of the complexity of the prob-
lem, there is no guarantee that the overall programming and tuning procedure will
end-up successfully.

The CAO system has been implemented in a real-life STC system towards
demonstrating its potential for providing an automated and systematic approach
that will neglect the need for the tedious and costly human involvement. The
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Fig. 1: City of Chania Traffic Network

Fig. 2: Real-life Application of the CAO system to the urban road STC system of
Chania: traffic network performance improvements (blue=real data; black=linear
fit of the real-data). The x-axis corresponds to the number of days the CAO
system is operating. The y-axis reflects the daily system performance in terms of
(speed×demand), which is known as the system productivity.

particular STC system where CAO has been implemented is the STC system for
the urban road network of the city of Chania, Greece (see Fig. 1) which is a
highly challenging traffic network: it involves a very complex signalling structure;
frequent illegal or double-parking which change the network characteristics and
junction capacities in an unpredictable way; and a traffic demand that changes
significantly throughout the year (Chania is a touristic city with its population
increasing by almost 100% during summer time). It is also emphasized that the

ADMM employed and its original parameters (i.e., the tunable parameters θ before



10 Iakovos T. Michailidis et al.

their tuning by CAO) correspond to a very well-designed STC system, achieving the

best the state of the art can offer [28]. Table 2 provides the details of the CAO
implementation for the STC system of the city of Chania.

Table 2: Details of CAO application in the STC system of the city of Chania.

N = 20 Smart traffic junctions controlling in real-time green times
ui(t) Green times of traffic lights of the ith junction
zi(t) Number of vehicles in each of the links (incoming roads) to the ith junction
di(t) no of vehicles (for each incoming link) entering the traffic network
ADDM The ADDM consists of the strategy TUC(θ, z(t)), a well-established traffic

control strategy which is based on control systems principles [28]. The initial
set of parameters θ(0) were the ones obtained after a quite lengthy and tedious
manual tuning in the past.

T = 24h time-horizon
J(t) (average mean speed of the whole traffic network) × (total no of vehicles en-

tering the traffic network)= System Productivity

The real-life results after implementing CAO for about 60 days (see Fig. 2),
indicate that CAO was able to provide ∼ 50% improvements over a well-designed STC

system. The improvements have been calculated based on the productivity index
(the mean speed achieved inside the network multiplied by the traffic demand). The
calculations for estimating the cost savings in Table 2 assume a fuel consumption
of 10L per 100Km [55] in urban areas and a price of 1.2AC/L. Table 3 summarizes
the result of CAO application in the STC system of the city of Chania.

Table 3: Results of CAO application in the STC system of the city of Chania.

Annual fuel savings (due to reduction
of travel times) as compared to the “best
state-of-the-art”

1-2 Million AC/year for an urban area of
100,000 people

Improvement of Traffic Network Per-
formance as compared to the “best state-
of-the-art”

∼50%

3.2 Smart Energy Homes (SEH): Real-life applications in two large-scale
buildings

Calculating the optimal decisions that balance energy and user needs is by no
means an easy task. Extensive research and real-life experiments performed over
the last decades exhibited that demand-optimized actions require modifying the
operating set-points many times during the day, in an intelligent and delicate man-
ner. Such decisions should also consider the complex interplays between diverse
factors such as equipment and envelope dynamics, user comfort and needs, occu-
pancy schedules, weather conditions, etc. [9, 13, 27, 42]. Things become way more
complicated when local energy generation (renewable sources, spinning reserves
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Fig. 3: a. AFCON Ltd. building, Tel-Aviv, Israel (left); b. Technical University of
Crete building, Chania, Greece (right)

etc.) and storage are involved: in this case, the problem of generating optimal
decisions that guarantee the aforementioned attributes becomes way more com-
plicated. Unfortunately, existing methods for calculating such optimal decisions
usually rely on the analytic knowledge of the building dynamics [26, 44]. Appar-
ently, such assumption is not realistic since developing an analytic model is an
extremely “expensive” and cumbersome procedure. Moreover, such models would
require continuous recalibration since SEH ecosystems are not static in time, a
fact which renders the model “maintenance” extremely expensive when it comes
to large-scale deployments. To make things worse, even in the cases where an elab-
orate model is available, existing methods for calculating the optimal decisions are
computationally quite expensive [53,58].
The CAO system has been implemented in two real-life, large-scale SEH systems

towards employing an automated and systematic control approach that is able to
overcome the aforementioned drawbacks involved in existing solutions:

3.2.1 Application to the office building of AFCON Ltd. (Tel Aviv, Israel)

The first SEH system concerns the main office building of AFCON Ltd., which is
located in a suburban area of Tel-Aviv, Israel. It was built in 2004 to host over
600 employees. The building is comprised of 5 floors: Floors 1 and 2 are used
as storage spaces without any air conditioning units, while floors 3, 4 and 5 are
consisted of offices (about 70 offices and rooms per floor) (see Fig. 3a). The net
heated floor area (3rd, 4th and 5th floor in total) is around 2350m2. The daily
energy demand is approximately 11879kWh during spring period. Two couples of
chillers are installed for indoor climating purposes; each of the chiller can deliver
up to 150 refrigeration tons (total of 600 tons) which corresponds to 527kW per
chiller (total 2.108MW ). The indoor air-conditioning system includes AHUs (Air
Handling Units) for offices located on the same floor – on average 10 offices share
the same AHU.
It should be noted that the comparison performance benchmark (base case scenario
- BCS) is the common control practice adopted in the real-life building employing a
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constant chiller set-point of 11◦C during working days. The AHU thermostats were
constantly set to 21◦C. Experiments were conducted focusing on the 3rd, 4th and
5th floors consisting of offices. The test period refers to the period from Monday
30/3/2015 to Friday 10/4/2015, when, due to mediocre outdoor conditions, the
energy-efficiency of the BCS was poor. Table 4 provides the details of the CAO
implementation for this application.

Table 4: Details of CAO application in the SEH system of AFCON Ltd.

N = 2× 21 AHU thermostat set-points regulating in real-time the water temperature
ui(t) Set-points of the i− th chiller
zi(t) Indoor temperature for all 210 offices located on the 3rd, 4th and 5th floor
di(t) Current and forecasted ambient temperature, total solar radiation and oc-

cupancy
ADDM Combination of a linear controller and a rule-based controller
T = 24h time-horizon
J(t) Weighted summation of the active chiller energy consumption and indoor

comfort

The evaluation results demonstrated that CAO led to substantial power savings
of ∼ 35% translated into 6711kWh average daily consumption, without violating
the acceptable comfort bounds. An estimation of the potential savings – sum-
marized in Table 5 – in terms of energy cost, can be extracted considering that
the benchmark control application requires 11879kWh/day in average and CAO
requires only 6711kWh/day. Using the EU-28 average price of 0.125AC/kWh for
industrial consumers [15], such difference can be translated in a daily amount of
646AC savings during summer period.

Table 5: Results of CAO application in the SEH system of AFCON Ltd.

Daily energy savings during spring pe-
riod as compared to the “usual practice”

5168 kWh/day

Daily economic savings during spring
period as compared to the “usual practice”

646 AC/day

3.2.2 Application to an office building of Technical University of Crete, (Chania,

Greece)

The second SEH application involves a 2-floor office building, located inside the
campus of the Technical University of Crete, Greece (see Fig. 3b). The building
area of 450m2 is divided into 10 offices, each equipped with a 12000btu conven-
tional air conditioning unit as well as indoor temperature and humidity sensors.
The building is also equipped with a photovoltaic (PV) panel, which provides solar
energy to the building. The building is considered as a conventional building with
poor insulation characteristics which render the problem of optimization and effi-
cient control design to an extremely challenging one, due to the strong dependence
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of the indoor conditions to the outdoor ones. The energy consumption is highest
during the summer period when large cooling loads are required to achieve an
acceptable indoor thermal conditioning. Large glass surfaces, combined with the
Greek summer and the poor insulation factor of the building, usually lead to over-
heating. Therefore the respective tests focused on reducing the air-conditioners
energy consumption during the summer period. The simple rule-based control
strategy, which is used in the building control practice, was adopted as the base
case for comparison purposes. The rule-based control employs a very simple strat-
egy, which consists of keeping the air-conditioner set points constantly equal to
25◦C during the office hours, and turn them off outside office hours (8 : 00−17 : 00).
Table 6 provides the details of the CAO implementation for this application.

Table 6: Details of CAO application in the SEH system of Chania Building.

N = 10 Air-conditioner set-points
ui(t) Set-points of the i− th air-conditioner
zi(t) Indoor temperature and humidity for all 10 offices
di(t) Current and forecasted ambient temperature, outdoor humidity, total solar ra-

diation and occupancy
ADDM Combination of a linear controller and a rule-based controller
T = 24h time-horizon
J(t) Weighted summation of the total energy consumption and indoor comfort

CAO was able to reduce energy consumption by 19%, while indoor comfort
conditions remained within acceptable comfort bounds. An estimation of the po-
tential savings – summarized in Table 7 – in terms of energy cost, can be extracted
by considering that the benchmark control application requires 126kWh/day in
average while CAO requires only 100kWh/day. Using the EU-28 average price of
0.125AC/kWh for industrial consumers [15], such energy consumption difference can
be translated in 3.25AC daily savings during the summer period.

Table 7: Results of CAO application in the SEH system of Chania Building.

Daily energy savings during summer pe-
riod during spring period as compared to
the “usual practice”

35 kWh/day

Daily economic savings during summer
period during spring period as compared to
the “usual practice”

3.25 AC/day

3.3 Autonomous Trajectory Design System for AUVs: Real-life application in the
Port of Porto, Portugal

Another instance of IoT application is the deployment of underwater robots (AUVs)
to accomplish underwater mapping, see e.g., [6, 22, 45, 48, 50]). Despite these ad-
vances, however, almost all underwater map-building methods are characterized
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(a) NOPTILUS-1 (b) NOPTILUS-2 (c) NOPTILUS-3

Fig. 4: The three AUVs used in the Multi-AUV underwater experiments.

by low autonomy, since they typically rely on a set of pre-defined trajectories and
often on human intervention. In other words, AUVs usually follow trajectories
designed off-line, before the actual deployment, which is a limiting factor when
a totally unknown area is to be mapped underwater: pre-defined trajectories are
quite likely to “miss” areas rich in information or AUVs may waste valuable time
focusing on low informative regions. A common approach for tackling these prob-
lems in practice, is to perform the following repetitive procedure. Initially, AUVs
map the sea-floor following blindly defined trajectories (usually in a lawn-mover
pattern). Once this first step is accomplished, new trajectories are generated, al-
ways off-line, but now using the existing seabed knowledge from the constructed
maps and this procedure is repeated many times.

To alleviate the previously described shortcomings we apply the centralized
CAO algorithm. The aim of this research is to generate on-line trajectories for a
team of AUVs in order to construct fast and accurate sea-floor maps [21] while also
enabling the possibility to simultaneously track a dynamic event. Two different
experiments were conducted in the Leixões Port, located in the city of Oporto,
Portugal. Both experiments involved a fleet of 3 AUVs (called Noptilus-1, Noptilus-

2 and Noptilus-3) shown in Figure 4. Table 8 provides the details of the CAO
implementation for this application. Next we summarize the details of the 2 real-
life experiments.

Table 8: Details of CAO application in the multi-AUV mapping test-case.

N = 3 Number of AUVs (Noptilus-1, Noptilus-2 and Noptilus-3)
Operation terrain Q Square area with dimensions equal to 240× 240 meters
ui(t) Robots’ movements
zi(t) Terrain measurements (may be corrupted by noise)
T = 450 timesteps Time-horizon (where by a new time-step is defined whenever new

waypoints are sent to the AUVs)
d = 1m Safety distance from the ground
dr = 0.5m Safety distance between any two robots
J(t) Summation of the mapping performance on each tile
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3.3.1 1st Experiment - One AUV faces hardware malfunction during the mapping

mission

In this experiment, we deployed the fleet of the 3 AUVs having as an objective
to perform cooperative mapping of the seafloor using their bathymetric measure-
ments. Figure 5a illustrates the progress of the 3 AUVs (blue lines) until time-step
90. The AUVs’ positions, at this time-step, are depicted with the magenta spheres.
The black tiles correspond to areas where the AUVs have not yet acquired any
measurement, while the colorful ones correspond to the areas where the AUVs have
started (and may have completed) their estimation process. The color in each one
of them is an error index that varies from dark-blue, in case where the AUVs
have acquired a perfect match from the ground truth, to dark-red in case where
the measurements do not have any correspondence with the actual surface (ground
truth map) that underlines the specific tile. It should be highlighted that the CAO
algorithm does not use any information regarding the ground truth map (or error
index): during the exploration process, the AUVs adjust their movements taking
as input only their bathymeters’ measurements and their locations (as estimated
by the localization module). Figure 5b depicts the time-step where a (simulated)
hardware malfunction took place. The malfunctioned vehicle had to return im-
mediately to the base-station to avoid jeopardizing such an extremely expensive
infrastructure. Figure 5c exhibits the adaptation in the navigation schemes of the
two remaining AUVs. The important feature here is that, one AUV autonomously
chose to cover the tiles that would have been assigned, under normal conditions, to
the damaged AUV. The mapping process was terminated after 450 time-steps when
the AUVs covered the majority of the operation area having estimated 136 from
144 tiles (Figure 5d). It is worth mentioning that in the majority of the estimated
tiles, the AUVs acquired a satisfactory number of bathymeter’s measurements,
different in each case, since it is highly dependent on the actual morphology that
underlines the tile. A comparison was also performed versus the usual practice
of mapping using pre-defined trajectories [21]. The results of the comparison are
summarized in Table 9.

Table 9: Results of CAO application in the multi-AUV mapping test-case.

Accuracy as compared to the “usual practice” 1.5 more accurate maps
Mission Time as compared to the “usual practice” 50% reduction (at least)
Preparation/Pre-deployment Effort 90% reduction

3.3.2 2nd Experiment: Performing Target Tracking simultaneously with the mapping

task

In this scenario, the task was to construct a map of the seafloor area while, con-
currently, tracking the trajectory of a moving target. In this scenario we utilized a
fleet of only 2 vehicles, due to the fact that the third available vehicle was utilized
as the moving target. The information regarding the moving target was available
through AUV-to-moving-target distance. In other words, the two AUVs do not
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Fig. 5: Multi-AUV 1st experiment: a. Exploration time-step 90 (top-left); b.
Noptilus-1 has stopped its exploration process(red thick sphere), Exploration time-
step 100 (top-right); c. Noptilus-2 undertakes the tiles of Noptilus-1, Exploration
time-step 221 (bottom-left); d. Completion of the experiment, Exploration time-
step 450 (bottom-right)

know the position of the moving target, but they are using their AUV-to-moving
target distance measurements in order to estimate the — dynamic — position of
the target. Even from the initial time-steps, the difference from the previous exper-
iment is evidential. Figure 6a depicts such an initial state, where one AUV seems
to approach almost directly the position of moving target in order to minimize
their in-between distance.

In a subsequent timestep (Figure 6c) another feature of the utilized navigation
algorithm can be observed. At this very moment, the distance between the target
and any of the two AUVs was more or less the same. However, the bathymetric
information below the AUV which was responsible for tracking the target, was
far more important than the other one. The CAO algorithm without any build-
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in mechanism to detect and appropriately act on such cases, chose to “switch”
the tasks between the two AUVs. By doing so, the AUVs (as a whole) were able
to keep track of the movements of the moving target without undesired spikes
on the estimated trajectory and, at the same time, to dedicate one vehicle to
gather sensor data from regions where the mapping accuracy was low (oonigure
6d). The aforementioned switching process was performed several times during
the experiment, in cases where the AUVs had more or less the same distance
from the target and there was a clear advantage for the specific switching. It is
worth highlighting that, the algorithm chose to make the transitions only when the
AUVs’ distances from the target were the same, in order to avoid sudden increases
in the estimation error of the target’s motion.

The experiment was terminated after 450 time-steps where the AUVs had ac-
curately estimated, mainly but not limited, the area where the target was moving,
while at the same time had almost perfectly estimated the target’s trajectory.

4 Distributed Version: The Local4Global Cognitive Adaptive

Optimization Tool

The CAO algorithm described in the previous sections, assumes a centralized form.
However, in large-scale IoT implementations, such a centralized formation is not
practically implementable: instead, the local parameters θi of the ith Thing must
be updated using only locally available information (plus information about the
global criterion time-history). L4G-CAO [30] suitably revises CAO so as to meet
such a requirement. Table 10 describes the details of the L4G-CAO algorithm.

The following Theorem provides the basic attributes of L4G-CAO which –
despite the distributed nature of L4G-CAO – are similar to those of CAO.

Theorem 2 Let Di,TT (k)− D̂i,T be zero-mean and bounded. Then, under some mild

conditions on the continuity of J , the following hold:

(a)

θ(k) 7→ θ∗

where θ∗ denotes a local optimum of J , i.e., ∇J(θ∗, DT (k)) = 0.

(b)

J(k + 1) ≤ J(k) +O(sup
i
|Di,T (k)− D̂i,T |) + ε(k)

where ε(k) is a term that decays to zero exponentially fast.

Proof: The proof – see also [35] – can be established by using standard results
from representing state-space systems with input/output models. Using these re-
sults it can be seen that Theorem 2 is a direct application of Theorem 1. More
precisely:

As a first step, it is not difficult for someone to see that the L4G-CAO algorithm
assumes a mathematical form as follows:

θi(k + 1) = Pi(θi(k), D̂i,T (k), J(k − 1), . . . , J(k − d)) (7)
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Fig. 6: Multi-AUV 2nd experiment: a. Noptilus-3 approaches the target in order
to improve its estimation, Exploration time-step 18 (top-left); b. Noptilus-3 keeps
tracking of the target, while the Noptilus-1 take measurements in order to produced
a detailed map, Exploration time-step 87 (top-right); c. The target tracking task
is assigned to Noptilus-1, Exploration time-step 139 (bottom-left); d. Noptilus-3 is
re-sensing the underestimated tiles, while Noptilus-1 keeps tracking of the target.
Exploration time-step 150 (bottom-right)

for some nonlinear vector function Pi(·). Therefore, the overall L4G-CAO dynamics
can be written in state-space form as follows:

θ̄(k + 1) = F
(
θ̄(k), D̂T (k), J(k − 1), . . . , J(k − d)

)
y(k) = h

(
θ̄(k), θi(k), DT (k)

)
where θ̄ = [θτ1 , θ

τ
2 , . . . , θ

τ
i−1, θ

τ
i+1, . . . θ

τ
N ]τ , F = [P τ1 , P

τ
2 , . . . , P

τ
i−1, P

τ
i+1, . . . P

τ
N ]τ and

y = J . Please note that θi is considered as an exogenous input in the above
equations. Using standard results from transforming state-space into input/output
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Table 10: The L4G-CAO Algorithm

At every kth iteration (where each iteration involves the IoT ecosystem operating for T time-
units with θi being constant and equal to θi(k)) measure the IoT ecosystem performance J(k)
and assume that the value of J(k) is available to each of the Things. Then, θi is updated using
the following steps:

1. Construct an estimator for the global performance J(k + 1) at the ith Thing level as
follows:

Ĵi(k + 1) = ϑτi (k)φ

(
θi(k), Di,T (k), J(k − 1), . . . , J(k − d)

)
(6)

where Ĵi(k + 1) denotes the estimate (prediction) of J(k + 1), φ is chosen as in the
CAO case, d is a positive integer chosen typically in the range 5 − 10 and Di,T (k) =
[dτi (1), . . . , dτi (N)]τ . Please note that each Thing has its own estimator.
The estimation vector ϑi is constructed using standard Least-Squares (LS) estimation, i.e.,

ϑi(k) = argmin
χ

k−1∑
`=k−W (k)

(
χτφ

(
θi(`), Di,T (`), J(`− 1), . . . , J(`− d)

)
− J(`+ 1)

)2

where W (k) denotes the time-window over which the LS estimation is taking place.
2. Choose α(k) as in the case of CAO.
3. Generate – randomly or pseudo-randomly – a set of Li candidate perturbations

δθ
(1)
i (k), δθ

(2)
i (k), . . . , δθ

(L)
i (k) where δθ

(j)
i (k) are vectors of the same dimension as θi(k)

and Li is an integer satisfying Li ≥ 2dim(θi).
4. Estimate the effect of each of the candidate perturbations to the current vector θi(k) by

employing the estimator (6) and pick the candidate perturbation with the “best” effect,

i.e., choose the vector δθ
(j∗i )
i (k) that satisfies

δθ
(j∗i )
i (k) = argmin

j=1,...,Li

{
ϑτi (k)φ

(
θi(k) + α(k)δθ

(j)
i (k), D̂i,T (k), J(k − 1), . . . , J(k − d)

)}

where D̂i,T (k + 1) denotes an estimate (prediction) of Di,T (k + 1).
5. Set

θi(k + 1) = θi(k) + α(k)δθ
(j∗i )
i (k)

6. Go to step 1 until performance convergence has been achieved.

systems (see e.g., Theorem 2 in [32]) we can see that

y(k + 1) ≡ J(k + 1) = =i
(
J(k), J(k − 1), . . . , J(k − d), θi(k), DT (k), D̂T (k)

)
where =i(·) denotes an unknown nonlinear function. Therefore, the global perfor-
mance index J(k) can be calculated – at the ith Thing level – through a non-
linear function =i(·) by using the previously measured values of J . By defining

D(k) =
[
J(k), J(k − 1), . . . , J(k − d), DτT (k), D̂τT (k)

]τ
, we have that the problem of

optimizing J can be transformed into the problem of optimizing the cost J̄i at the
ith Thing level, where J̄i is as follows:

J̄i

(
θi(k),D(k)

)
≡ =i

(
J(k), J(k − 1), . . . , J(k − d), θi(k), DT (k), D̂T (k)

)



20 Iakovos T. Michailidis et al.

and thus the CAO algorithm – and its attributes – are directly applicable by
replacing J,DT in CAO by J̄i,D, respectively. �

4.1 Distributed Smart Energy Systems (DSES): Real-Life application in a
large-scale building

The first of L4G-CAO experiments concerns the case where there is a number of in-
dependent SEH (Smart Energy Home) systems in a large building, with each SEH
system operating over a distinct part of a building (e.g., each apartment or office of
the building is equipped with a distinct SEH system that operates independently
of the others). The different SEH systems are not allowed to communicate to each
other due to e.g., privacy preserving reasons. The only information that is common
to all different SEH systems is the total daily energy performance of the whole
building along with a daily comfort index indicating the degree of satisfaction in
all the different apartments/offices (for instance, this index may correspond to the
worst of comfort conditions among all different apartments/offices).

The particular building where the L4G-CAO experiments were performed is an
office-building that belongs to E.ON. Energy Research Centre of RWTH University
and is located in Aachen, Germany. Figure 7 below, illustrates the building’s south
façade and its ground-floor plan. The available control and sensing infrastructure
consisted of:

– sensors: room temperature (T), room CO2 level, occupants’ presence contact
(PS), window-opening sensor (WS), manual temperature dial (TD) and energy
measuring devices in each room, and;

– actuators: (i) Air Chiller (ACH) systems for cooling the supply air from the
central air handling unit individually for each room; and (ii) Volume Flow
Control (VFC) systems, for adjusting the air flow rate individually for each
room, separately in supply and exhaust air duct.

It must be emphasized that the energy supplied was a mixture of renewable and
non-renewable (i.e. from the power distribution grid) energy provided by the cen-
tral supply system.
The usual case for buildings located in northern climates suggests that the largest
amount of the total energy demand is consumed during winter and autumn peri-
ods, mainly for heating purposes. For this reason, the L4G-CAO real-life experi-
ments were conducted during 21st–26th of November 2016. The goal of L4G-CAO
was to reduce the Non-Renewable Energy Consumption (NREC) while keeping
user comfort at satisfactory levels. Table 11 provides the details of the L4G-CAO
implementation for this application.

For comparison purposes, the L4G-CAO strategy is compared with the base
case control strategy. The base case control strategy has been designed and im-
plemented in the respective Building Management System (BMS) by the planners
and the commercial system provider in a conventional manner. Such a strategy em-
ploys a closed PID-based control-loop, designed to react on room temperature and
CO2 deviations on ACs and VFCs. It should be noted that three rooms of about
30m2 each were utilized for the L4G-CAO application (see Fig. 7b blue area).
Moreover, two neighboring rooms with similar thermal characteristics, where the
benchmark control was applied during the experimental period, served as the base
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Fig. 7: a. RWTH E.ON. Building south facade (left); b. RWTH E.ON. Building
ground-floor plan overview (right)

Table 11: Details of L4G-CAO application in the SEH system of RWTH E.ON.

N = 6 ACH and VFC subsystem per test room (total of 3 test rooms)
ui(t) ACH set-points and VFC exhaust and

supply set-points in each room
zi(t) Indoor temperature and CO2 for all

3 rooms
di(t) Current and forecasted ambient

temperature, total solar radiation and
occupancy

ADDM Combination of a linear controller and a rule-based controller
T = 24h time-horizon
J(t) Weighted summation of the NREC

and indoor comfort index

case control scenario test-bed (see Fig. 7b red area). The real-life application of the
L4G-CAO optimization tool employed a distributed topology to ensure seamless
scalability and confirmed all of the aforementioned properties in real-life operating
conditions. It is worth mentioning that NREC improvements could be observed
even from the very first experimental day. The total improvement of the defined
NREC index was 34% during the considered test period. In particular, during the
experiments the average daily NREC consumption was about 0.067kWh/m2/day

in the benchmark control case (see red circled area in Fig. 7b) while in the L4G-
CAO case it was reduced to 0.043kWh/m2/day (see blue circled area in Fig. 7b).
Note that internal solar heat gains were also negligible during the experimental
period therefore indoor solar heat gains did not affect the evaluation process. In
addition, the indoor comfort levels achieved were similar in both L4G-CAO and
the base case control strategy.

An estimation of the potential savings in terms of non-renewable energy cost
can be extracted considering that the benchmark control application requires
0.067kWh/m2/day in average and L4G-CAO 0.043kWh/m2/day. Using the EU-
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Fig. 8: Microgrid test case.

28 average price of 0.125AC/kWh for industrial consumers [15], daily savings of
0.003AC/m2/day during the cold period of the year can be obtained.

Table 12: Results of L4G-CAO application in the SEH system of RWTH E.ON.

Daily NREC savings during test pe-
riod compared to the “usual practice”

0.024 kWh per m2 per day

Daily economic savings during test
period compared to the “usual practice”

0.003AC per m2 per day

4.2 Distributed Smart Energy Systems (DSES): Simulated application in a
microgrid of 100 Buildings

The second experiment of L4G-CAO concerns a simulated experiment of a con-
nected microgrid of 100 buildings with each of the buildings equipped with each
own independent SEH system (see Figure 8). Moreover, the buildings of the micro-
grid share different energy sources: first, renewable energy sources (photovoltaic
panels) are shared as a ‘must-take’ source, i.e. photovoltaic energy is always used
when it is available; as a second source, the microgrid is also connected to the main
electricity grid, i.e. if the output of the renewable energy sources is not enough,
the extra electricity is absorbed from the main grid. In the following, more details
about the different components of the microgrid are given.

It is important to underline that each one of the 100 buildings has a different
size, different orientation, and different occupancy schedule (cf. Table 13): this
implies that each building has different energy needs. For example, because of
the orientation, each building receives a different portion of solar radiation, which
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might influence drastically the selection of the Heating, Ventilation, and Air Con-
ditioning (HVAC) set point in each room (and thus the energy need). The size of
the building and the fact that the building is occupied or not are additional fac-
tors influencing the selection of the HVAC set point. In particular, Table 13 shows
that buildings may have 10, 6 or 4 rooms: the size of the buildings goes from 300
to 900 m2, and the rooms in a single building have the same size. Buildings may
host office activities, commercial activities, or residential activities. Each activity
has its own occupancy schedule. It is assumed that all the rooms of a building ex-
hibit the same occupancy pattern. Table 14 provides the details of the L4G-CAO
implementation for this application.

Table 13: Building composition and type of activity/occupancy schedule for the
microgrid test case

No. of buildings Rooms for building Size of building
40 10 from 300 to 900 m2

30 6 from 300 to 900 m2

30 4 from 300 to 900 m2

Type of activity Occupancy schedule
Office 6-18

Commercial 7-14 and 17-21
Residential 0-7 and 14-18 and 21-24

Table 14: Details of L4G-CAO application in the microgrid of 100 Buildings.

N = 700 AC subsystem per test room
ui(t) AC set-points
zi(t) Indoor temperature, humidity and occupancy for all rooms
di(t) Current and forecasted ambient temperature, total solar radiation and occu-

pancy
ADDM Constant AC set-point = 24◦C or Constant AC set-point = 25◦C
T = 168h time-horizon
J(t) Weighted summation of the NREC and indoor comfort index

The L4G-CAO results are compared to two the base case control strategies
RBC24oC and RBC25oC , which are two Rule-Based-Controllers setting the build-
ing set-points to 24oC or 25oC when occupants are present. The two histograms
presented in Fig. 9, have been obtained from a one-week simulation. The first his-
togram presents the energy absorbed from the grid in e for each type of buildings
and the whole microgrid. The second histogram presents the mean percentage of
people who are dissatisfied. Similarly to the single building test case, L4G-CAO
achieves better scores in both histograms. In particular, with respect to RBC24oC ,
L4G-CAO manages to save more than 400e for the whole system, while maintain-
ing the comfort at better levels. On the other hand, L4G-CAO achieves a slightly
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Fig. 9: District: energy cost in AC and Percentage of Dissatisfied People during a 1
week experiment

better energy cost than RBC25oC : the energy cost is slightly better despite the pre-
cooling effect implemented by L4G-CAO that demands more energy consumption.
Table 15 summarizes the results of the application of L4G-CAO to the microgrid
case.

Table 15: Results of L4G-CAO application in the microgrid of 100 Buildings.

NREC savings during test period com-
pared to the “usual practice”

40AC per week per building

Indoor comfort conditions compared to
the “usual practice”

33% improvement

4.3 Continuous monitoring/inspection of critical infrastructures utilizing a team
of robots (simulated experiment)

The final L4G-CAO application concerns a multi-robot mission where the objective
is to continuously monitor an area of interest using the team of robots. Such
tasks can be found in several real-life applications including: surveillance in hostile
environments (i.e. areas contaminated with biological, chemical or even nuclear
wastes), environmental monitoring (i.e. air quality monitoring, forest monitoring),
and law enforcement missions (i.e. border patrol), etc. The task of continuous
monitoring can be shortened to the task of designing the robots trajectories, in
real-time, so that:

(1) the part of the terrain that is monitored (i.e. visible) by the robots is maxi-
mized;

(2) for every point in the terrain, the closest robot is as close as possible to that
point.

The second objective is significant for two practical reasons: (a) at first, the
closer is the robot to a point in the terrain, the better its ability to monitor this
point becomes and (b) secondly, in many multi-robot monitoring applications,
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fast and accurate robot intervention (when needed) is highly essential. More in-
formation about this problem set-up along with the specialized version of the
distributed-CAO algorithm for it can be found in [23].

To validate our approach in a realistic environment, we used data which were
collected from the Birmensdorf area in Zürich. The main constraints imposed
on the robots are that they must remain within the terrain’s limits, i.e. within
[xmin, xmax] and [ymin, ymax] in the x- and y- axes, respectively. At the same
time they have to satisfy a maximum height requirement whilst not hitting the
terrain, i.e. they must remain within [z + d, zmax] along z-axis. Moreover, the
operational robots had a maximum threshold regarding their sensors’ capabilities,
i.e. ||xi − q|| < thres where xi denotes the 3D position of the ith robot and q any
point of the surface. Finally, any two robots should have always a safety distance of
dr, i.e. ||xi−xj || < dr, ∀i, j ∈ {1, . . . , N}. The details of the performed experiments
are summarized in Table 16.

Table 16: Details of L4G-CAO application in the multi-robot monitoring test-case.

N = 6 Number of robots
ui(t) Robots’ movements
zi(t) Terrain measurements (may be corrupted by noise)
T = 1000 timesteps Time-horizon
d = 0.5m Safety distance from the ground
dr = 0.5m Safety distance between any two robots
thres = 16m Maximum visibility of the robots
J(t) Summation of the distance between any point of the

terrain with the closest robot and the number of invisible
points

Advantages over usual practice No need of tele-operation and explicit coordination

Several initial configurations for the robot team were tested. In figure 10 the
cost function of an illustrative scenario is presented, while the initial and the final
configuration of the team (for the same scenario) is displayed in figures 11 and 12
respectively. Please note that, in both figures, the color in each cell of the surface,
denotes the closest robot that actively monitors that cell. If the cell is marked
with black color, it means that no robot is able to monitor that cell, either due to
the maximum visibility range or the geometry of the environment. In table 17 the
final achieved coverage percentage for different initial configurations and different
clustering in the Birmensdorf area, is presented.

Table 17: Coverage percentage for different initial configurations and different
clustering in the Birmensdorf area.

(% coverage)
Test case 1 2 3 4 5
Initial configuration 8.62 44.35 19.78 15.46 29.89
Final configuration 86.61 86.27 86.23 85.53 85.95
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Fig. 10: Cost function evolution in the scenario of monitoring an unknown terrain.

5 Conclusions

Despite the complexity and heterogeneity aspects involved in IoT, the CAO and
L4G-CAO methodologies have presented a quite robust and inter-operable behav-
ior in all application domains considered herein. The absence of elaborate simu-
lation models and analytic knowledge of the specified use case scenario did not
hinder the applicability of both methodologies due to their model-free operation
feature.

CAO and L4G-CAO applications proved the high potential of model-free intel-
ligent control in orchestrating a cooperative web of autonomously acting entities
in order to improve the overall IoT performance in a real-time cognitive manner.
Both have been evaluated in three different application domains under diverse
conditions and scenarios presenting a quite promising behavior. CAO and L4G-
CAO were able to improve significantly the overall IoT performance as compared
to well-established base case strategies.
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